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A B S T R A C T

Continued advances in neuroimaging technologies and statistical modelling capabilities have improved our
knowledge of structural brain development in children and adolescents. While this has provided an increasingly
nuanced understanding of brain development, the field is still plagued by inconsistent findings. This review
highlights the methodological diversity in existing longitudinal magnetic resonance imaging (MRI) studies on
structural brain development during childhood and adolescence, and addresses how such variation might
contribute to inconsistencies in the literature. We discuss the impact of method choices at multiple decision
points across the research process, from study design and sample selection, to image processing and statistical
analysis. We also highlight the extent to which different methodological considerations have been empirically
examined, drawing attention to specific areas that would benefit from future investigation. Where appropriate,
we recommend certain best practices that would be beneficial for the field to adopt, including greater com-
pleteness and transparency in reporting methods, in order to ultimately develop an accurate and detailed un-
derstanding of normative child and adolescent brain development.

1. Introduction

Over the past two decades we have learnt a great deal about nor-
mative structural brain development during childhood and adolescence
with the application of magnetic resonance imaging (MRI) in long-
itudinal projects. While the pioneer studies published in the 1990s and
2000s continue to be among the most influential and often cited, more
recent investigations have provided complementary, but also some-
times contradictory findings on normative structural brain develop-
ment. This paper aims to highlight potential methodological causes of
inconsistencies in findings on structural brain development across stu-
dies, focusing on the impact of specific method choices at multiple
decision points along the research process, from study design and
sample selection, to image processing and statistical analysis.

A growing number of longitudinal projects aim to characterize ty-
pical structural brain development in children and/or adolescents,
many of which are summarized in Table 1. While some characteristics
of these projects overlap, differences are also evident for instance in
sample size, age range, number of repeat assessments, and study design.

Multiple studies commonly arise from each dataset, which often differ
in methodology, as outlined in Table 2. The diversity of MRI processing
techniques, structural measures of interest and statistical analytic
methods used across these studies is a demonstration of the pro-
ductivity and ever-evolving nature of the fields of neuroimaging and
developmental neuroscience. However, it is also important to consider
how different methods impact the results of studies investigating ty-
pical brain developmental trajectories. Following a brief overview of
current findings, we explore how each methodological step, from study
design and image acquisition to model fitting, might influence findings
and conclusions. We focus specifically on longitudinal studies of typi-
cally developing children (5 years and older) and adolescents. Younger
age ranges were excluded due to methodological issues that are either
unique or exemplified in this population (e.g., techniques to reduce
anxiety and movement, such as scanning during natural sleep, the
availability of child-appropriate equipment, and use of appropriate
analytic techniques such as pediatric brain templates; as described by
Raschle et al., 2012. Further details regarding the search strategy and
inclusionary criteria is presented in Box 1.
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2. Overview of findings

Initial studies from the National Institute of Mental Health Child
Psychiatry Branch (NIMH CPB) described inverted-U-shaped growth
trajectories of cortical volumetric grey matter development (Giedd
et al., 1999; Lenroot et al., 2007), reporting peak volumes around early
adolescence that distinguished periods of growth during childhood
from reductions during adolescence. However, results from subsequent
studies using other longitudinal datasets have not identified such
“peaks”; many studies report continued reductions in grey matter vo-
lumes from late childhood into adolescence (Aubert-Broche et al., 2013;
Tamnes et al., 2013; Wierenga et al., 2014b). Studies have also reported
temporal patterns of maturation, including rostral-to-caudal waves of
growth in the corpus callosum (Thompson et al., 2000) and posterior-
to-anterior growth in the frontal lobe (Gogtay et al., 2004), although
few have attempted to replicate these effects in different samples. In
contrast to cortical grey matter volume, studies have consistently re-
ported an increase in white matter volume across childhood and ado-
lescence (Aubert-Broche et al., 2013; Lebel and Beaulieu, 2011; Mills
et al., 2016). A recent study highlighted convergence in developmental
patterns of grey and white matter volume across four longitudinal
studies when employing the same pre-processing stream and analytic
methods (see Fig. 1; Mills et al., 2016). However, others have noted
variability in developmental trajectories at higher anatomical resolu-
tions such as the vertex level (Mutlu et al., 2013; Vijayakumar et al.,
2016a).

Over time, there has been an increasing emphasis on the examina-
tion of the subcomponents of cortical volume: thickness, defined as the
distance between the white matter/grey matter cortical boundary and
grey matter/CSF cortical boundary; and surface area, defined as the area
of one of these two boundaries (or surfaces). While the majority of
studies have identified reductions in cortical thickness between child-
hood and adulthood (e.g., Wierenga et al., 2014b), some have found
nonlinear global development (e.g., Raznahan et al., 2011b). In con-
trast, studies consistently report global surface area increasing between
childhood and early adolescence (Raznahan et al., 2011b; Wierenga
et al., 2014b) before decreasing across the rest of the second decade
(Alemán-Gómez et al., 2013). Regional differences have also been re-
ported for these subcomponents of cortical volume (Mutlu et al., 2013;
Tamnes et al., 2017; Vijayakumar et al., 2016a; Wierenga et al., 2014a).

A small number of studies have investigated measures of gyri and

sulci structure. The exposed outer cortical surface area, referred to as
the convex hull area (CHA), has been found to show both quadratic
(Raznahan et al., 2011b) and linear (Alemán-Gómez et al., 2013) re-
ductions with age, while linear reductions in the degree of gyrification
have been found more consistently (ratio of total cortical surface area to
CHA: gyrification index (GI); Alemán-Gómez et al., 2013; Raznahan
et al., 2011b). However, one vertex-wise investigation reported that GI
might not change in certain parts of the medial surface between
childhood and adolescence (Mutlu et al., 2013).

As studies try to unpack the complex relationships between these
different brain measures, we are gaining a more nuanced understanding
of how brain structure develops. While there is, overall, convergence in
findings on a broad scale (i.e., overall direction of change), incon-
sistencies are evident when considering details such as the precise
shape of developmental trajectories, presence/location of peaks, re-
gional variability and sex differences. Following, we discuss each of the
likely major methodological contributions to these inconsistences.

3. Study and sampling design

3.1. Study design

Since maturation (i.e., age) cannot be randomly assigned to parti-
cipants in studies investigating brain development, it represents a cor-
relational or quasi-independent variable. The resultant quasi-experi-
mental research designs can be broadly grouped into one of three
categories: cross-sectional, complete longitudinal or single cohort de-
sign (SCD), and accelerated longitudinal design (ALD; Appelbaum and
McCall, 1983; Bordens and Abbott, 2013). A limitation common to
these designs is that a causal relationship cannot be directly inferred
between age and the variables of interest, as third (confounding) vari-
ables cannot be fully accounted for.

Inferences about developmental processes from studies with cross-
sectional designs, where different participants at different ages are
compared, can be misleading (Kraemer et al., 2000). Also, because of
large individual differences in brain structure, longitudinal designs with
repeated measurements of the same participants have greatly increased
statistical power (Steen et al., 2007). Therefore, cross-sectional studies
are not reviewed here. SCD studies, where all participants begin at the
same age and are followed across the entire age-range of interest, have
the advantage of simplicity and are more amenable to certain modelling

Table 1
Overview of longitudinal structural MRI datasets.

Project Age-range,
years

n participants
(longitudinal*)

N scans Average scans per
participant (i.e. N/n)

Range
scans

Longitudinal study
design (ALD vs SCD)

Field strength/voxel size

Alberta Canada sample 5–32 103 (103) 221 2.15 1–4 ALD 1.5T, 1× 1×1
BrainSCALE UMCU–NTR 9–13 224 (178) 346 1.54 1–3 SCD 1.5T, 1× 1×1.2
Braintime 8–28 271 (241) 680 2.51 1–3 ALD 3T, 0.875× 0.875×1.2
Leonard Florida sample 5–11 45 (45) 90 2.00 2 ALD 1.5T, 0.98×0.98× 1.25
Mother-Child Cohort Study 4–10 428 (304) 732 1.71 1–2 ALD 1.5T, 1.25×1.25× 1.2
Neurocognitive

Development
8–25 191 (148) 407 2.13 1–3 ALD 1.5T, 1.25×1.25× 1.2

NICHE cohort 7–23 147 (53) 233 1.59 1–3 ALD Two scanners: 1.5T, 1× 1×1.2
NIH MRI Study of Normal

Brain Development
5–22 538 (527) 1381 2.56 1–3 ALD 6 scanners: all 1.5T, In-plane 1× 1,

slice thickness ranged from 1 to 1.8 mm
NIMH Child Psychiatry

Branch
3–30 647 (376) 1274 1.93 1–7 ALD 1.5T, 0.94×0.94× 1.5

Orygen Adolescent
Development Study

11–20 166 (128) 367 2.21 1–3 SCD 2 scanners: both 3T, 1:
0.48× 0.48×1.5, 2: 0.9× 0.9× 0.9

University of Minnesota
cohort

9–24 149 (149) 298 2.00 2 ALD 3T, 1×1×1

University of Pittsburgh
cohort

10–14 126 (81) 226 1.79 1–2 SCD 3T, 1×1×1

NB: This table only reports longitudinal datasets that have been published, including both projects that are completed and still ongoing. Details were acquired by contacting investigators,
or from studies published using the datasets. a Longitudinal participants refers to the number of participants that have 2 or more scans. ALD=Accelerated longitudinal; SCD= Single
cohort design; NIH=National Institute of Health; NIMH=National Institute of Mental Health; UMCU–NTR=University Medical Center in Utrecht–Netherlands Twin Register.

N. Vijayakumar, et al. Developmental Cognitive Neuroscience 33 (2018) 129–148

130



Ta
bl
e
2

D
et
ai
ls
of
lo
ng
itu
di
na
ls
tu
di
es
in
ve
st
ig
at
in
g
no
rm
at
iv
e
st
ru
ct
ur
al
br
ai
n
de
ve
lo
pm

en
t
be
tw
ee
n
ch
ild
ho
od

an
d
yo
un
g
ad
ul
th
oo
d.

St
ud
y
(P
ro
je
ct
)

N
(m
al
es
)

N
Sc
an
s,
n
pe
r

su
bj
ec
t,

ap
pr
ox
im
at
e

in
te
rv
al

A
ge

(y
)

Im
ag
e
pr
oc
es
si
ng

so
ftw

ar
e

(v
er
si
on
)

M
ea
su
re
s:
vo
l/
sa
/c
t/

ot
he
rs

Sp
ec
ifi
ci
ty
of

an
al
ys
es

In
de
x
of
an
al
ys
es
:a
bs
ol
ut
e

or
ch
an
ge

va
lu
es
,w

ho
le

br
ai
n
co
rr
ec
tio
n

St
at
is
tic
al
an
al
ys
es
:a
na
ly
si
s
m
et
ho
d

(s
of
tw
ar
e)
,e
ffe
ct
s,
m
od
el
fit
,t
ra
je
ct
or
ie
s,

m
ul
tip
le
co
m
pa
ri
so
n

Le
be
la
nd

Be
au
lie
u
(2
01
1)

(A
lb
er
ta
,C
an
ad
a)

10
3
(5
1)

22
1,
2–
4
pe
r

su
bj
ec
t,
4
ye
ar

5–
32

Fr
ee
Su
rf
er

Vo
lu
m
e

G
lo
ba
l

A
bs
ol
ut
e
va
lu
es
an
d

di
ffe
re
nc
e
sc
or
e
fo
r
w
ith
in

su
bj
ec
t
ch
an
ge

(b
as
ed

on
ch
an
ge

≫
>
1S
D
)

M
ix
ed

m
od
el
s,
Eff
ec
ts
:a
ge
,c
on
tr
ol
lin
g
fo
r

se
x,
M
od
el
se
le
ct
io
n:
st
ep
-d
ow

n,
Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic

Zh
ou

et
al
.(
20
15
)
(A
lb
et
a,

Ca
na
da
)

90
(4
2)

18
0,
2
pe
r
su
bj
ec
t,

4
ye
ar

5–
32

Ci
ve
t1
.1
.1
1

CT
,S
A

G
lo
ba
la
nd

lo
ba
r

A
bs
ol
ut
e
va
lu
es
an
d

di
ffe
re
nc
e
sc
or
e
fo
r
w
ith
in

su
bj
ec
t
ch
an
ge

(b
as
ed

on
ch
an
ge

≫
>
1S
D
)

St
ud
en
t's
t-t
es
tc
om

pa
re
d
m
ea
n
th
in
ni
ng

ra
te
s
ac
ro
ss
ag
e
gr
ou
ps
,K
ru
sk
al
–W

al
lis

te
st

of
di
ffe
re
nc
es
in
ra
tio

of
in
cr
ea
se
d/
de
cr
ea
se
/

no
ch
an
ge

be
tw
ee
n
ag
e
gr
ou
ps
,T
ra
je
ct
or
ie
s:

lin
ea
r

Sw
ag
er
m
an

et
al
.(
20
14
)

(B
RA

IN
SC
A
LE
)

22
4
(1
12
)

34
6,
1–
2
pe
r

su
bj
ec
t,
3
ye
ar

9–
12

Fr
ee
Su
rf
er
5.
1

Vo
lu
m
e

Se
gm

en
ta
tio
n

A
bs
ol
ut
e
va
lu
es
an
d
IC
V-

co
rr
ec
te
d

Bi
va
ri
at
e
an
al
ys
es
of
tw
in
da
ta
:O

pe
nM

X,
Eff
ec
ts
:a
ge

w
ith
in
ea
ch

se
x
(?
),
se
x
at
ea
ch

tim
e
po
in
t,
M
C:
Bo
nf
er
ro
ni
fo
r
nu
m
be
r
of

in
de
pe
nd
en
t
di
m
en
si
on
s
in
da
ta

va
n
So
el
en

et
al
.(
20
12
)

(B
RA

IN
SC
A
LE
)

11
3
(6
0)

22
6,
2
pe
r
su
bj
ec
t,

3
ye
ar

9–
13

A
ut
om

at
ed
:P
ep
er
et
al
.(
20
08
);

Br
ou
w
er
et
al
.(
20
10
).
CL
A
SP

al
go
ri
th
m

CT
Ve
rt
ex
-w
is
e

Ch
an
ge

(d
iff
er
en
ce
)

O
ne

sa
m
pl
e
t-t
es
tE
ffe
ct
s:
se
x,
co
nt
ro
lli
ng

fo
r

ha
nd
ed
ne
ss
an
d
du
ra
tio
n
of
sc
an
-in
te
rv
al
.

Tr
aj
ec
to
ri
es
:l
in
ea
r,
M
C:
FD
R

A
le
m
án
-G
óm

ez
et
al
.(
20
13
)

(C
hi
ld
an
d
ad
ol
es
ce
nt

fir
st
-e
pi
so
de

ps
yc
ho
si
s

st
ud
y)

52
(3
2)

10
4,
2
pe
r
su
bj
ec
t,

2
ye
ar

11
–1
7

Fr
ee
Su
rf
er
5.
1
LP
;B
ra
in
Vi
sa

4.
2.
1

CT
,S
A
,G

I,
gy
ra
lW

M
th
ic
kn
es
s,
co
nv
ex

hu
ll

SA
,s
ul
ca
ll
en
gt
h/

de
pt
h/
w
id
th
.

G
lo
ba
la
nd

lo
ba
r

Pe
rc
en
ta
ge

ch
an
ge

(a
ve
ra
ge

or
su
m
m
ed

ac
ro
ss

he
m
is
ph
er
es
)

G
LM

:S
PS
S,
O
ne

sa
m
pl
e
t-t
es
t,
Eff
ec
ts
:l
ob
e,

ag
e,
se
x,
in
te
ra
ct
io
n
of
ag
e
an
d
se
x,
sc
an
ne
r,

tim
e
be
tw
ee
n
ac
qu
is
iti
on
s.
M
C:
FD
R

So
w
el
le
ta
l.
(2
00
4)
(L
eo
na
rd

Fl
or
id
a)

45
(2
3)

90
,2

pe
r
su
bj
ec
t,

2
ye
ar

5–
11

A
ut
om

at
ed
:M

ac
D
on
al
d
et
al
.

(1
99
4)
;T
ho
m
ps
on

et
al
.,
(2
00
0)
;

So
w
el
le
t
al
.(
20
01
b)
;M

an
ua
l

tr
ac
in
g
of
su
lc
al
de
lin
ea
tio
n

CT
an
d
br
ai
n
gr
ow

th
(d
is
ta
nc
e
fr
om

ce
nt
er
of

br
ai
n/
he
m
is
ph
er
e)

Ve
rt
ex
-w
is
e,
lo
ba
r,

an
d
pe
ri
sy
lv
ia
n
RO

I
Ch
an
ge

(i
.e
.d
iff
er
en
ce
)

O
ne
-s
am

pl
e
t-t
es
t,
M
C:
pe
rm
ut
at
io
n
te
st
in
g

Ta
m
ne
s
et
al
.(
20
13
)
(N
CD

)
85

(4
7)

17
0,
2
pe
r
su
bj
ec
t,

2.
6
ye
ar

8–
22

Fr
ee
Su
rf
er
5.
1;
Q
U
A
RC

Vo
lu
m
e

Ve
rt
ex
-w
is
e
an
d

se
gm

en
ta
tio
n

Pe
rc
en
ta
ge

ch
an
ge

(v
er
te
x

an
d
su
bc
or
tic
al
)

G
LM

(c
ha
ng
e
di
ffe
rs
fr
om

ze
ro
):
Fr
ee
Su
rf
er
,

SP
SS
,R
,E
ffe
ct
s:
ag
e,
se
x,
an
d
in
te
ra
ct
io
n,

co
nt
ro
lli
ng

fo
r
sc
an

in
te
rv
al
,T
ra
je
ct
or
ie
s:

lin
ea
r,
A
ss
um

pt
io
n-
fr
ee

m
od
el
s
us
ed

fo
r

de
sc
ri
pt
io
n
(n
o
st
at
is
tic
al
te
st
in
g)
,M

C:
FD
R

&
Bo
nf
er
ro
ni

W
ie
re
ng
a
et
al
.(
20
14
a)

(N
IC
H
E)

13
5
(9
2)

20
1,
1–
≥
3
pe
r

su
bj
ec
t,

1.
5–
5.
5
ye
ar

7–
23

Fr
ee
Su
rf
er
5.
1

CT
,S
A
,C
V

Pa
rc
el
la
tio
n

A
bs
ol
ut
e

M
ix
ed

m
od
el
s,
Eff
ec
ts
:A

ge
,s
ex
,a
nd

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
St
ep
-d
ow

n
fo
r

ag
e,
BI
C
fo
r
se
x,
Tr
aj
ec
to
ri
es
:l
in
ea
r,

qu
ad
ra
tic
,c
ub
ic

W
ie
re
ng
a
et
al
.(
20
14
b)

(N
IC
H
E)

14
7
(9
4)

22
3,
≥
1
pe
r

su
bj
ec
t,

1.
5–
5.
6
ye
ar

7–
23

Fr
ee
Su
rf
er
5.
1

Vo
lu
m
e

Se
gm

en
ta
tio
n

A
bs
ol
ut
e

M
ix
ed

m
od
el
s,
Eff
ec
ts
:a
ge
,s
ex
,a
nd

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
st
ep
do
w
n
fo
r

ag
e,
BI
C
fo
r
se
x,
Tr
aj
ec
to
ri
es
:l
in
ea
r,

qu
ad
ra
tic
,c
ub
ic

A
ub
er
t-B
ro
ch
e
et
al
.(
20
13
)

(N
IH

M
RI
)

29
2

88
2,
2–
4
pe
r

su
bj
ec
t,
2
ye
ar

4–
19

Lo
ng
itu
di
na
lp
ip
el
in
e
(“
LL

m
et
ho
d”
)

Vo
lu
m
e

G
lo
ba
la
nd

re
gi
on
al
/

se
gm

en
ta
tio
n

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:a
ge
,s
ex
,a
nd

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
A
IC
,

Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic

Ca
o
et
al
.(
20
15
)
(N
IH

M
RI
)

30
3
(1
42
)

41
8,
1–
2
pe
r

su
bj
ec
t,
2
ye
ar

5–
18

Fr
ee
Su
rf
er

Vo
lu
m
e

Pa
rc
el
la
tio
n
an
d

se
gm

en
ta
tio
n

A
bs
ol
ut
e

LA
SS
O
:m

ul
tiv
ar
ia
te
lin
ea
r
re
gr
es
si
on
,

Eff
ec
ts
:a
ge

D
uc
ha
rm
e
et
al
.(
20
15
)
(N
IH

M
RI
)

38
4
(3
43
)

75
3,
1–
3
pe
r

su
bj
ec
t,
2
ye
ar

5–
22

CI
VE
T
1.
1.
11

SA
,C
V

Ve
rt
ex
-w
is
e
an
d

lo
ba
r

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
Su
rf
St
at
,R
,E
ffe
ct
s:
ag
e
w
ith

an
d
w
ith
ou
t
co
nt
ro
lli
ng

fo
r
W
BV
,M

od
el

se
le
ct
io
n:
St
ep
-d
ow

n
(v
er
te
x)
&
A
IC

(l
ob
ar
),

Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

D
uc
ha
rm
e
et
al
.(
20
16
)
(N
IH

M
RI
)

38
3
(3
43
)

75
3,
1–
3
pe
r

su
bj
ec
t,
2
ye
ar

5–
22

CI
VE
T
1.
1.
11

CT
Ve
rt
ex
-w
is
e
an
d

lo
ba
r

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
Su
rf
St
at
,R
,E
ffe
ct
s:
ag
e,
se
x,

w
ith

an
d
w
ith
ou
t
co
nt
ro
lli
ng

fo
r
W
BV
,

M
od
el
se
le
ct
io
n:
St
ep
-d
ow

n
(v
er
te
x)
&
A
IC

(l
ob
ar
),
Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

(c
on
tin
ue
d
on
ne
xt
pa
ge
)

N. Vijayakumar, et al. Developmental Cognitive Neuroscience 33 (2018) 129–148

131



Ta
bl
e
2
(c
on
tin
ue
d)

St
ud
y
(P
ro
je
ct
)

N
(m
al
es
)

N
Sc
an
s,
n
pe
r

su
bj
ec
t,

ap
pr
ox
im
at
e

in
te
rv
al

A
ge

(y
)

Im
ag
e
pr
oc
es
si
ng

so
ftw

ar
e

(v
er
si
on
)

M
ea
su
re
s:
vo
l/
sa
/c
t/

ot
he
rs

Sp
ec
ifi
ci
ty
of

an
al
ys
es

In
de
x
of
an
al
ys
es
:a
bs
ol
ut
e

or
ch
an
ge

va
lu
es
,w

ho
le

br
ai
n
co
rr
ec
tio
n

St
at
is
tic
al
an
al
ys
es
:a
na
ly
si
s
m
et
ho
d

(s
of
tw
ar
e)
,e
ffe
ct
s,
m
od
el
fit
,t
ra
je
ct
or
ie
s,

m
ul
tip
le
co
m
pa
ri
so
n

Kr
on
go
ld
et
al
.(
20
15
)
(N
IH

M
RI
)

33
5
(1
55
)

72
4,
1–
2
pe
rs
ub
je
ct

4–
22

Fr
ee
Su
rf
er
5.
3
(L
P)

CT
,S
A
,C
V

Pa
rc
el
la
tio
n

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
R
(l
m
e4
),
Eff
ec
ts
:a
ge
w
ith

se
x

as
nu
is
an
ce

re
gr
es
so
r,
Tr
aj
ec
to
ri
es
:l
in
ea
r

N
ie
et
al
.(
20
13
)
(N
IH

M
RI
)

44
5
(1
27
)

95
1

3–
20

A
ut
om

at
ed
:Z
ha
ng

et
al
.(
20
01
)

&
Li
u
et
al
.(
20
08
)

CT
Re
gi
on
al

A
bs
ol
ut
e

Li
ne
ar
re
gr
es
si
on

G
ie
dd

et
al
.(
19
99
)
(N
IM
H

CP
B)

14
5
(8
9)

28
0
sc
an
s,
1–
5
pe
r

su
bj
ec
t,
2
ye
ar

4–
22

A
ut
om

at
ed
:Z
ijd
en
bo
s
et
al
.

(2
00
2)

G
M
Vo
lu
m
e

Lo
ba
r

A
bs
ol
ut
e

M
ix
ed

m
od
el
s,
Eff
ec
ts
:a
ge
,s
ex

an
d

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
St
ep
-d
ow

n,
Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic

G
og
ta
y
et
al
.(
20
04
)
(N
IM
H

CP
B)

13
(6
)

52
,≥

3
pe
r
su
bj
ec
t,

2
ye
ar

4–
21

A
ut
om

at
ed
:T
ho
m
ps
on

et
al
.

(2
00
0)

G
M
vo
lu
m
e,
G
M
de
ns
ity

Lo
ba
r
an
d
ve
rt
ex
-

w
is
e

A
bs
ol
ut
e

M
ix
ed

m
od
el
s,
Eff
ec
ts
:a
ge
,M

od
el
se
le
ct
io
n

pr
oc
ed
ur
e:
St
ep
-d
ow

n,
Tr
aj
ec
to
ri
es
:c
ub
ic
,

qu
ad
ra
tic
,l
in
ea
r

G
og
ta
y
et
al
.(
20
06
)
(N
IM
H

CP
B)

31
(1
6)

10
0,
≥
2
pe
r

su
bj
ec
t,
2
ye
ar

4–
25

M
an
ua
lt
ra
ci
ng

fr
om

si
ng
le

in
di
vi
du
al
;s
ur
fa
ce
m
es
h
ap
pl
ie
d

to
hi
pp
oc
am

pu
s

G
M
Vo
lu
m
e

RO
Ia
nd

ve
rt
ex
-w
is
e

A
bs
ol
ut
e

M
ix
ed

m
od
el
s,
Eff
ec
ts
:a
ge
,s
ex

an
d

in
te
ra
ct
io
ns
;W

BV
us
ed

as
a
co
va
ri
at
e,
M
od
el

se
le
ct
io
n
pr
oc
ed
ur
e:
St
ep
-d
ow

n,
Tr
aj
ec
to
ri
es
:

cu
bi
c,
qu
ad
ra
tic
,l
in
ea
r

H
ar
ez
la
k
et
al
.(
20
05
)
(N
IM
H

CP
B)

30
0
(1
59
)

61
9,
1–
5
pe
rs
ub
je
ct

3–
25

Vo
lu
m
e

To
ta
lc
er
eb
ra
l

vo
lu
m
e
an
d
RO

Is
A
bs
ol
ut
e

Pa
ra
m
et
ri
c
(p
ol
yn
om

ia
l)
vs
.s
em

ip
ar
am

et
ri
c

(r
ed
uc
ed

ra
nk

pe
na
liz
ed

re
gr
es
si
on

m
od
el
s)
,

Eff
ec
ts
:a
ge
,s
ex

Le
nr
oo
t
et
al
.(
20
07
)
(N
IM
H

CP
B)

38
7
(2
09
)

82
9,
1–
7
pe
r

su
bj
ec
t,
2
ye
ar

3–
27

A
ut
om

at
ed

N
on
lin
ea
r
Im
ag
e

M
at
ch
in
g
an
d
A
na
to
m
ic
al

La
be
lli
ng

G
M
vo
lu
m
e,
W
M

vo
lu
m
e

G
lo
ba
la
nd

lo
ba
r

A
bs
ol
ut
e
an
d
pe
rc
en
ta
ge

ch
an
ge

M
ix
ed

m
od
el
s,
Eff
ec
ts
:s
ex
,w

ith
an
d
w
ith
ou
t

ad
ju
st
m
en
t
fo
r
W
BV

at
th
e
sa
m
e
ag
e,
M
od
el

se
le
ct
io
n:
St
ep
-d
ow

n,
Tr
aj
ec
to
ri
es
:c
ub
ic
,

qu
ad
ra
tic

an
d
lin
ea
r

M
ill
s
et
al
.(
20
14
a)
(N
IM
H

CP
B)

33
(2
3)

15
2,
3–
6
pe
r

su
bj
ec
t,
2
ye
ar

7–
30

Fr
ee
su
rf
er
5.
3
(L
P)

Vo
lu
m
e

RO
I

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:a
ge
,a
nd

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
A
IC
,

Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

M
ill
s
et
al
.(
20
14
b)
(N
IM
H

CP
B)

28
8
(1
64
),

A
TC
:2
21

85
7
(A
TC
:4
47
),
2–
7

pe
r
su
bj
ec
t,
2
ye
ar

7–
30

Fr
ee
su
rf
er
5.
1

CT
,S
A
,C
V

RO
I

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:a
ge
,s
ex
,a
nd

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
A
IC
,

Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

Ra
zn
ah
an

et
al
.(
20
11
a)

(N
IM
H
CP
B)

64
7
(3
28
)

12
74
,1
–≥

3
pe
r

su
bj
ec
t,
2
ye
ar

3–
30

M
N
Ia
na
to
m
ic
al
pi
pe
lin
e

CT
,S
A
,C
V,

G
I,
CH

A
G
lo
ba
l

A
bs
ol
ut
e
va
lu
es
an
d
ra
te
of

ch
an
ge

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:a
ge
,s
ex
,a
nd

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
St
ep
-d
ow

n
fo
r

ag
e,
lik
el
ih
oo
d
ra
tio

te
st
s
fo
r
se
x,

Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

Ra
zn
ah
an

et
al
.(
20
14
)
(N
IM
H

CP
B)

61
8
(3
12
)

11
71
,1
–≥

3
pe
r

su
bj
ec
t,
2
ye
ar

5–
25

Vo
lu
m
e:
M
A
G
eT

Br
ai
n,
SA
:

M
ar
ch
in
g
cu
be
sa
nd

A
M
IR
A
,C
V:

CI
VE
T

Vo
lu
m
e,
SA

Se
gm

en
ta
tio
n
an
d

gl
ob
al
CV

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:a
ge
,s
ex
,a
nd

in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
St
ep
-d
ow

n
fo
r

ag
e,
lik
el
ih
oo
d
ra
tio

te
st
s
fo
r
se
x,

Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

Sh
aw

et
al
.(
20
08
)
(N
IM
H

CP
B)

37
5
(1
96
)

76
4,
1–
≥
4
pe
r

su
bj
ec
t,
2
ye
ar

3–
33

A
ut
om

at
ed
:Z
ijd
en
bo
s
et
al
.

(2
00
2)

CT
RO

Ia
nd

ve
rt
ex
w
is
e

A
bs
ol
ut
e

M
ix
ed

m
od
el
s,
Eff
ec
ts
:a
ge
,M

od
el
se
le
ct
io
n:

St
ep

do
w
n,
Tr
aj
ec
to
ri
es
:c
ub
ic
,q
ua
dr
at
ic
an
d

lin
ea
r

Ti
em

ei
er
et
al
.(
20
10
)
(N
IM
H

CP
B)

50
(2
5)

18
3,
≥
3
pe
r

su
bj
ec
t,
2
ye
ar

5–
24

A
ut
om

at
ed
:Z
ijd
en
bo
s
et
al
.

(2
00
2)
;M

an
ua
lt
ra
ci
ng

of
su
br
eg
io
ns

Vo
lu
m
e

Pa
rc
el
la
tio
n
of

ce
re
be
llu
m

A
bs
ol
ut
e

M
ix
ed

m
od
el
s,
Eff
ec
ts
:s
ex
,w

ith
an
d
w
ith
ou
t

ad
ju
st
m
en
t
fo
r
W
BV
,M

od
el
se
le
ct
io
n:
St
ep
-

do
w
n,
Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

D
en
ni
so
n
et
al
.(
20
13
)
(O
A
D
S)

60
(3
2)

12
0,
2
pe
r
su
bj
ec
t,

4
ye
ar

11
–1
8

Fr
ee
Su
rf
er
5.
1

Vo
lu
m
e

Se
gm

en
ta
tio
n

A
bs
ol
ut
e
va
lu
es
an
d
W
BV
-

co
rr
ec
te
d

H
ie
ra
rc
hi
ca
ll
in
ea
r
m
od
el
s:
St
at
a,
Eff
ec
ts
:

A
ge
,h
em

is
ph
er
e,
se
x,
an
d
in
te
ra
ct
io
ns
,

Tr
aj
ec
to
ri
es
:l
in
ea
r,
M
C:
B-
Y
m
et
ho
d

Vi
ja
ya
ku
m
ar
et
al
.(
20
16
a)

(O
A
D
S)

90
(4
9)

19
2,
1–
3
pe
r

su
bj
ec
t,
3
ye
ar

11
–2
0

Fr
ee
Su
rf
er
5.
3
(L
P)

CT
,S
A
,C
V

Pa
rc
el
la
tio
n
an
d

ve
rt
ex
-w
is
e

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
SP
SS
,F
re
eS
ur
fe
r
LM

M
to
ol
bo
x,
Eff
ec
ts
:A

ge
,s
ex
,a
nd

in
te
ra
ct
io
ns
,

M
od
el
se
le
ct
io
n:
BI
C
(p
ar
ce
lla
tio
n)
,s
te
p-

do
w
n
(v
er
te
x)
,T
ra
je
ct
or
ie
s:
lin
ea
r,

qu
ad
ra
tic
,M

C:
FD
R

Su
lli
va
n
et
al
.(
20
11
)(
St
an
fo
rd

Re
se
ar
ch

In
st
itu
e)

28
(1
6)

56
,2

pe
r
su
bj
ec
t,

7.
3
m
on
th
s

11
–1
4

FS
L
FA
ST

Vo
lu
m
e

Lo
ba
r
an
d
RO

I
A
bs
ol
ut
e

Pe
rc
en
t
ch
an
ge
,E
ffe
ct
s:
ag
e,
se
x

13
7
(6
8)

20
9,
1–
4
pe
rs
ub
je
ct

6–
30

Fr
ee
Su
rf
er

CT
,G

I
Ve
rt
ex
-w
is
e

A
bs
ol
ut
e

(c
on
tin
ue
d
on
ne
xt
pa
ge
)

N. Vijayakumar, et al. Developmental Cognitive Neuroscience 33 (2018) 129–148

132



Ta
bl
e
2
(c
on
tin
ue
d)

St
ud
y
(P
ro
je
ct
)

N
(m
al
es
)

N
Sc
an
s,
n
pe
r

su
bj
ec
t,

ap
pr
ox
im
at
e

in
te
rv
al

A
ge

(y
)

Im
ag
e
pr
oc
es
si
ng

so
ftw

ar
e

(v
er
si
on
)

M
ea
su
re
s:
vo
l/
sa
/c
t/

ot
he
rs

Sp
ec
ifi
ci
ty
of

an
al
ys
es

In
de
x
of
an
al
ys
es
:a
bs
ol
ut
e

or
ch
an
ge

va
lu
es
,w

ho
le

br
ai
n
co
rr
ec
tio
n

St
at
is
tic
al
an
al
ys
es
:a
na
ly
si
s
m
et
ho
d

(s
of
tw
ar
e)
,e
ffe
ct
s,
m
od
el
fit
,t
ra
je
ct
or
ie
s,

m
ul
tip
le
co
m
pa
ri
so
n

M
ut
lu
et
al
.(
20
13
)

(S
w
itz
er
la
nd
)

M
ix
ed

m
od
el
s:
M
at
la
b
(n
lm
efi
t)
,E
ffe
ct
s:
ag
e,

se
x,
an
d
in
te
ra
ct
io
ns
,M

od
el
se
le
ct
io
n:
BI
C

fo
r
ag
e,
LR
T
fo
r
se
x,
Tr
aj
ec
to
ri
es
:l
in
ea
r,

qu
ad
ra
tic

an
d
cu
bi
c,
M
C:
M
on
te
Ca
rl
o

si
m
ul
at
io
n
in
Fr
ee
Su
rf
er

Ta
na
ka

et
al
.(
20
12
)
(T
oy
am

a,
Ja
pa
n)

11
4
(6
0)

20
9,
1–
4
pe
rs
ub
je
ct

1
m
–2
5

M
an
ua
lt
ra
ci
ng

Vo
lu
m
e

G
lo
ba
la
nd

lo
ba
r

A
bs
ol
ut
e
va
lu
es
an
d
IC
V-

co
rr
ec
te
d

Li
ne
ar
re
gr
es
si
on
,E
ffe
ct
s:
ag
e,
co
nt
ro
lli
ng

fo
r
se
x
an
d
he
m
is
ph
er
e,
M
od
el
se
le
ct
io
n:
R

sq
ua
re
d,
Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic

an
d

cu
bi
c

U
ro
se
vi
c
et
al
.(
20
12
)

(U
ni
ve
rs
ity

of
M
in
ne
so
ta
)

14
9

29
8,
2
pe
r
su
bj
ec
t,

2
ye
ar

9–
26

Fr
ee
Su
rf
er
4.
5
(L
P)

Vo
lu
m
e

RO
Is

W
BV
-c
or
re
ct
ed

Re
pe
at
ed
-m
ea
su
re
s
A
N
CO

VA
s:
SP
SS
,E
ffe
ct
s:

tim
e,
ag
e
(c
ov
ar
ia
te
),
se
x,
tim

e*
ag
e,

tim
e*
se
x,
co
nt
ro
lli
ng

fo
r
sc
an
ne
r
up
gr
ad
e,

Tr
aj
ec
to
ri
es
:l
in
ea
r

Fj
el
le
ta
l.
(2
01
5)
(N
CD

,M
CC
N

St
ud
y,
Co
gn
iti
ve

an
d

Pl
as
tic
iti
y
th
ro
ug

th
e

Li
fe
sp
an
)

97
4
(4
66
)

16
33
,1
–3

pe
r

su
bj
ec
t,
2.
5
ye
ar

4–
89

Fr
ee
Su
rf
er
5.
3
(L
P)

CT
Pa
rc
el
la
tio
n
ba
se
d

on
ge
ne
tic

cl
us
te
ri
ng

A
bs
ol
ut
e
an
d
pe
rc
en
ta
ge

ch
an
ge

G
en
er
al
ad
di
tiv
e
m
ix
ed

m
od
el
s:
R;
Li
ne
ar

m
ix
ed

m
od
el
s:
M
at
la
b,
Eff
ec
ts
:a
ge

(s
ex

no
t

fo
un
d
to
in
flu
en
ce
pr
el
im
in
ay
re
su
lts
),
M
od
el

fit
:A

IC
an
d
BI
C,
Tr
aj
ec
to
ri
es
:l
in
ea
r,

sm
oo
th
in
g
sp
lin
e,
M
C:
FD
R

M
ill
s
et
al
.(
20
16
)
(B
ra
in
tim

e,
N
IM
H
CP
B,
N
CD

,
Pi
tt
sb
ur
gh
)

39
1
(1
91
)

85
2,
≥
2
pe
r
su
bj
ec
t

7–
30

Fr
ee
Su
rf
er
5.
3
(L
P)

Vo
lu
m
e

G
lo
ba
l

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:a
ge
,s
ex
,w

ith
an
d

w
ith
ou
t
co
nt
ro
lli
ng

fo
r
IC
V
or
W
BV
,M

od
el

se
le
ct
io
n:
A
IC
,T
ra
je
ct
or
ie
s:
lin
ea
r,

qu
ad
ra
tic
,c
ub
ic

N
B:
In
cl
us
io
na
ry
cr
ite
ri
a
ar
e
pr
es
en
te
d
in
Bo
x
1.
St
ud
ie
sa
re
gr
ou
pe
d
by

pr
oj
ec
t,
an
d
su
bs
eq
ue
nt
ly
or
de
re
d
by

au
th
or
su
rn
am

e
an
d
ye
ar
pu
bl
is
he
d.
A
IC
=
A
ka
ik
e
In
fo
rm
at
io
n
Cr
ite
ri
a;
A
N
CO

VA
=
an
al
ys
is
of
co
va
ri
an
ce
;B
IC
=
Ba
ye
si
an

in
fo
rm
at
io
n

cr
ite
ri
on
;B
-Y
=
Be
nj
am

in
i-Y
ek
ut
ie
li;
CT

=
co
rt
ic
al
th
ic
kn
es
s;
CV

=
co
rt
ic
al
vo
lu
m
e;
FD
R
=
fa
ls
e
di
sc
ov
er
y
ra
te
;G

I=
gy
ri
fic
at
io
n
in
de
x;
G
LM

=
ge
ne
ra
ll
in
ea
r
m
od
el
;G
M
=
gr
ey

m
at
te
r;
IC
V
=
in
tr
ac
ra
ni
al
vo
lu
m
e;
LM

M
=
lin
ea
r
m
ix
ed

m
od
el
s;

LP
=
lo
ng
itu
di
na
lp
ro
ce
ss
in
g;
LR
T
=
lik
el
ih
oo
d
ra
tio

te
st
;M

CC
N
=
M
ot
he
r
Ch
ild

Co
ho
rt
St
ud
y;
N
CD

=
N
eu
ro
co
gn
iti
ve

D
ev
el
op
m
en
t;
N
IH
=
N
at
io
na
lI
ns
tit
ut
e
of
H
ea
lth
;N

IM
H
CP
B
=
N
at
io
na
lI
ns
tit
ut
e
of
M
en
ta
lH

ea
lth

Ch
ild

Ps
yc
hi
at
ry
Br
an
ch
;

O
A
D
S=

O
ry
ge
n
A
do
le
sc
en
t
D
ev
el
op
m
en
t
St
ud
y;
RO

I=
re
gi
on

of
in
te
re
st
;S
A
=
su
rf
ac
e
ar
ea
;W

BV
=
w
ho
le
br
ai
n
vo
lu
m
e;
W
M
=
w
hi
te
m
at
te
r.

N. Vijayakumar, et al. Developmental Cognitive Neuroscience 33 (2018) 129–148

133



techniques (King et al., this issue), but are time-consuming, costly, and
may not be feasible for broad age ranges. Of the 34 studies reviewed
(Table 2), only 4 were SCD studies: two studies from the same project
focus on a narrow age-range (9–13 years; Swagerman et al., 2014; van
Soelen et al., 2012), and a further two studies from the same project
focus on a broader age range (11–18 and 11–20; Dennison et al., 2013;
Vijayakumar et al., 2016a).

Because of the limitations of SCD studies, nearly all longitudinal
studies of structural brain development in childhood and adolescence
have used ALD. In ALD, participants begin at different ages or years and
contribute data to only part of the age-range of interest. These designs
thus include both a cross-sectional and a longitudinal component.
Compared to SCD, ALD can cover the age-range of interest with a
shorter study duration, they are less affected by participant dropout
(attrition), and this dropout tends to be less systematically related to
age. ALD is also less vulnerable to the effects of unforeseen method or
procedure changes during the data collection period (e.g., scanner
change or upgrades); these confounding variables in SCD are often
more systematically related to age. SCD also confounds age with po-
tential cohort effects. However, the major trade-off of ALD is the in-
herent missing data for each participant (Galbraith et al., 2017), and
some individuals may only contribute a single (i.e., cross-sectional)
data point to the study.

ALD studies differ widely in the number of participants and mea-
surements, and the frequency and timing of measurements, factors that
have implications for the duration and cost of the study, and also the
statistical analyses (Galbraith et al., 2017). Many ALD developmental
imaging studies appear to be structured such that individuals enter the
study at pre-selected ages (i.e., age cohorts), which together span the
age range of interest. The spans of the age cohorts overlap, and subjects
are followed longitudinally over a shorter time span relative to the
entire age range (Bell, 1954). However, it is of note that studies rarely
describe this information in detail, and whether the design was tailored
for separating the effects of age, cohort and/or time of measurement
(see Appelbaum and McCall, 1983). Critically, small samples not only
reduce the chance of detecting a true effect, but also reduce the like-
lihood that a statistically significant result reflects a true effect. The
consequences of this are unreliable research and overestimated effect

sizes (Button et al., 2013). In the current review, we have not included
small longitudinal studies defined as those analyzing fewer than 50
scans.

3.2. Sample size and scan numbers

The sample sizes of the 34 studies included in Table 2 were highly
variable. The number of participants ranged from 13 to 974, and the
number of scans from 52 to 1633 (note that the largest study also in-
cluded adults). Mean number of scans per participant ranged from 1.3
to 4.0, but to our knowledge, only 16 of 34 studies had on average more
than two scans per participant, and only 3 (Gogtay et al., 2004; Mills
et al., 2014a; Tiemeier et al., 2010) had three or more scans per par-
ticipant on average. Thus, although several studies include relatively
large samples, the amount of longitudinal data is generally low com-
pared to many other areas of research, especially when considering that
all except five of the ALD studies focused on an age-range of 13 or more
years, with scan intervals typically being only a few years or less.

3.3. Sample characteristics

A number of important questions must also be addressed when
choosing and recruiting participants (Bordens and Abbott, 2013), such
as deciding upon the target population and the sampling and recruit-
ment procedures, and defining eligibility and exclusionary criteria
(Greene et al., 2016). As imaging studies of typical brain development
rely upon volunteers that are willing to undergo MRI scans multiple
times, they typically include non-random samples from subpopulations
of the actual target population. Samples are usually relatively socio-
economically advantaged, have relatively high IQ, and are comprised of
mostly Caucasian participants. As one exception, the NIH MRI Study of
Brain Development used a population-based sampling method to ensure
their sample was socio-demographically representative of the popula-
tion.

Currently, the lack of detailed characterizations and reporting of the
sampling procedure and final sample (e.g., approximately 40% of re-
viewed studies did not report sample IQ) prevents a good under-
standing of the generalizability of findings to the population. Further,

Box 1
Search strategy and inclusionary criteria.

We searched PubMed using the following terms: brain AND development AND (childhood OR adolescence) AND (structure OR thickness
OR volume OR surface area OR gyrification) AND MRI, to identify studies published in this field to date (January 2017). Inclusionary
criteria for the review were: i) sample age range predominantly encompassing mid-childhood (5 years) to young adulthood, ii) focused on
normative development, iii) use of structural MRI to examine grey matter brain structure, iv) longitudinal study design, v) total number of
scans greater than 50, and vi) written in English. The reference lists of identified articles were also searched for further relevant articles.
Identified studies are summarized in Table 2.

Fig. 1. Development of a) cortical grey matter volume and b) cortical white matter volume across four longitudinal datasets. NCD=Neurocognitive Development, CPB= (National
Institute of Health) Child Psychiatry Branch. Adapted from Mills et al. (2016).
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oftentimes, studies arising from the same dataset use different sub-
samples and descriptions of study-specific selection criteria are not
clear.

4. Image acquisition strategies and parameters

4.1. Strategies

Before performing MRI of children/adolescents, it is essential to
systematically prepare the participant using, for instance, age-appro-
priate instructional videos or mock-scan. During the scan, multiple
strategies can be implemented to create a good experience and obtain
adequate data based on the need of the participant, such as having a
parent present in the scanner room, playing a movie of their choice, and
talking to them via the intercom between sequences (Greene et al.,
2016). Optimization of the physical environment, for example with
head cushions, may also increase subject comfort and decrease in-
scanner motion.

Motion-related artefact can, to some extent, be mitigated by image
acquisition methods. Perhaps most importantly, simple reductions in
scanning time increase the probability of children remaining still
throughout a scan. More involved methods can be broadly divided into
retrospective techniques based on computational processing of scans
(e.g., Atkinson et al., 1999) and prospective techniques that actually
modify pulse sequences in response to detected motion (e.g., White
et al., 2010). Even without explicit correction, tracking in-scanner
motion, either via MR technology (Korin et al., 1990) or independently
using external sensors (Qin et al., 2009), provides important informa-
tion that can potentially be used in subsequent quality control (QC; see
Section 5 below).

4.2. Acquisition parameters

Most of the reviewed studies used 1.5T scanners, while more re-
cently started projects typically use 3T scanners (i.e., only four of the 33
studies listed in Table 2 were performed only using 3T scanners
(Dennison et al., 2013; Sullivan et al., 2011; Urosevic et al., 2012;
Vijayakumar et al., 2016a)). In addition, two studies included scans
from both 1.5T and 3T, and analyzed them either independently (Mills
et al., 2016) or together (Mutlu et al., 2013). Generally, higher field
strength gives higher signal to noise ratio and improved spatial re-
solution at a fixed scan time, but some artefacts also become more
prominent (Bernstein et al., 2006; Tijssen et al., 2009).

All studies reviewed used T1-weighted (T1w) pulse sequences,
which give good soft tissue contrast. Sometimes, T2-weighted (T2w)
sequences or a combination of T1 w and T2w images are used, as T2w
images offer a different type of contrast and can be particularly useful
for instance to visualize and segment cerebrospinal fluid, which in turn
may improve the accuracy of the reconstructed outer cortical surface
for example (for an overview of MRI principles and sequences, see
Westbrook et al., 2011). Similar to the discussion of field strength
above, the spatial resolution of the pulse sequences have generally
improved over time, and more recently started projects typically use
∼1mm isotropic voxels. Higher spatial resolution improves the accu-
racy of the measurements, particularly of smaller structures, and also
allows for use of more fine-grained automated segmentation proce-
dures, such as volumetric measurement of hippocampal subfields
(Iglesias et al., 2015) and subdivisions of the cerebellum (Diedrichsen,
2006).

Multiple studies on adults have directly tested the reliability of MRI-
derived measures of brain volume or cortical thickness across field
strengths, scanner vendors, scanner upgrades, pulse sequences, the
number of acquisitions (single vs. multiple averaged), parallel imaging,
and scan sessions (Han et al., 2006; Heinen et al., 2016; Jovicich et al.,
2013, 2009; Kruggel et al., 2010; Morey et al., 2010; Wonderlick et al.,
2009). The studies generally conclude that these types of measurements

are reliable. However, the results also clearly demonstrate that the ef-
fects of varying acquisition specifics are non-negligible. For example, in
a recent study, 10 elderly subjects were scanned with 1.5T and 3T
scanners of the same manufacturer and platform on the same day
(Heinen et al., 2016). Brain volumes were relatively robustly measured
for large compartments, including total grey matter and white matter
(e.g., for FreeSurfer 5.3 (see section 6 below), mean absolute difference
as% of mean volume: 1% and 2%, respectively). Nonetheless, effects of
this magnitude clearly represent substantial sources of noise, or po-
tentially systematic bias, in developmental studies of children or ado-
lescents where annual change rates in most structures are in the 0–2%
range (Tamnes et al., 2013). Furthermore, image acquisition differences
may potentially have even larger effects for smaller brain compart-
ments. Of particular importance for longitudinal studies, scan-rescan
reliability has been shown to vary across brain regions, with relatively
low reliability e.g. for the nucleus accumbens and the amygdala (Morey
et al., 2010). On average, scan-rescan reliability is proportional to the
volume of a structure (Morey et al., 2010) and improves when using
longitudinal analysis pipelines (Jovicich et al., 2013; Reuter et al.,
2012).

The general recommendation is thus that it is highly important to
consider all of these image acquisition variables in both the design and
analysis of longitudinal studies. Advances in this dynamic field will
continue to offer opportunities to optimize these variables in order to
address specific research questions. However, the implementation of
novel approaches can also be problematic for longitudinal studies that
must place a premium on consistency over the course of the study. One
should as far as possible strive for uniformity in image acquisition
within a given study, and if this is not fully possible, e.g. due to un-
foreseen hardware of software changes, it is critical to try to avoid
systematic relationships between image acquisition variables and the
variables of interest such as age. If image acquisition parameters do
vary across scans, the inclusion of redundant scans that differ only in
terms of these parameters can help to partially address possible con-
founds in a statistical model.

5. Quality control procedures

Another aspect of data processing that is rarely reported is the
procedure used to assess image and measurement quality. Anecdotally,
there appears to be much variation within the field. This is not specific
to neuroimaging, as certain practices evolve and are only widely
adopted after systematic testing. For example, rigorous motion control
procedures in resting-state functional connectivity studies were widely
adopted after the publication of several reports illustrating the impact
of motion on resulting inferences, including developmental differences
(Power et al., 2013, 2012; Satterthwaite et al., 2013).

Data quality can be assessed at different stages in a structural MRI
study, as recently outlined by Backhausen and colleagues (2016). In
addition to checking data quality at the scanner console after running a
structural sequence, which can allow for re-acquisition if needed, it is
critical that data quality is assessed after processing images; even ac-
ceptable raw images can fail the processing stage. For example, one
study found that almost half of a large number of scans showed cortical
reconstruction errors within the anterior temporal cortex (Mills et al.,
2014b). Data quality can be assessed manually or by outlier detection
after quantification of structure. When a scan is considered to “fail” the
processing procedure, it is possible to manually intervene and reprocess
the image. Certain software packages (i.e., FreeSurfer) provide ex-
tensive detail on multiple methods to do so. Nevertheless, what degree
to intervene, and how to intervene, is at the discretion of the researcher,
and often these details are not included in manuscripts. Assessment of
the quality of processed scans remains subjective, and studies vary in
their methods employed and details reported. Given the current lack of
reporting of QC procedures, it is hard to fully understand their impact
on resulting developmental trajectories of anatomical brain measures.
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One of the most common artefacts in structural brain imaging is
motion-induced artefact. Motion can be identified in a raw anatomical
image by visual inspection (i.e. for ringing or waves at the periphery of
the brain), and can also be systematically quantified based on pre-
defined criteria. In addition, there are now automated Brain Images
Database Structure (BIDS) apps that will assess raw anatomical MRI
scans for quality and output quantitative measurements (Gorgolewski
et al., 2017). However, there are no set standards for assessing motion
artefact or clear cut-offs for when to consider an anatomical scan
unusable. Already 15 years ago, the issue of how head motion during
image acquisition could relate to anatomical brain measures in devel-
opmental neuroimaging studies was addressed in a study by the NIMH
CPB (Blumenthal et al., 2002). Assessing the relationship between
image quality (with motion artefact rated as “none”, “mild”, “mod-
erate” or “severe”) and brain volume measures, findings revealed that
quality was negatively correlated with age and grey matter volumes.
The authors cautioned that even minimal motion artefact had a sig-
nificant impact on anatomical estimates.

The same conclusion was drawn by a larger systematic investigation
of head motion artefacts in MRI scans from adult participants con-
ducted more than a decade later. Reuter et al. (2015) assessed the
impact of visual inspection QC procedures on reducing motion-related
artefact bias by categorizing scans as “pass”, “warn”, or “fail”. A ne-
gative relationship between motion and grey matter volume remained
even after “fail” scans were removed, suggesting that QC procedures
that only exclude scans with blatant motion artefact do not adequately
remove the confound of motion. However, the relationship between
motion and grey matter volume was no longer significant when “warn”
scans were also removed, suggesting that bias from motion artefact can
be more appropriately dealt with when more stringent QC procedures
are implemented. This study also collected navigator images at each TR
during the scan, which allowed quantification of the actual amount of
head motion. Findings revealed that motion reduced estimates of grey
matter volume and thickness across the majority of the cortex, with
some regional variability (including increased thickness in certain re-
gions). Even small amounts of motion introduced a spurious result of up
to 2% grey matter volume loss. Further, although the relationship be-
tween motion and cortical thickness estimates was significant in images
processed using FreeSurfer’s longitudinal pipeline, the relationship was
even greater when images were treated as independent from one an-
other (processed with the regular pipeline).

The impact of motion has been further confirmed and extended by
recent papers using fMRI motion in the same scanning session as a
proxy for motion during structural scans (Alexander-Bloch et al., 2016;
Pardoe et al., 2016; Savalia et al., 2017). This proxy measure shows
high inter-scan reliability and reasonable convergence with visual in-
spection for motion artefact in structural scans, supporting its use when
explicit measurements of motion during structural scans are not avail-
able. Similar to visual inspection, scans with increased motion esti-
mated using this proxy measure appear to exhibit decreased total brain
and regional grey matter volume (Alexander-Bloch et al., 2016; Pardoe
et al., 2016; Savalia et al., 2017); decreased lobar (Alexander-Bloch
et al., 2016) and vertex-level thickness (Pardoe et al., 2016; Savalia
et al., 2017); and increased lobar estimates of cortical curvature
(Alexander-Bloch et al., 2016). There is significant regional hetero-
geneity in the impact of motion, which may partially result from het-
erogeneity in the amount of physical motion itself related to differential
distance from physiological axes of rotation. Motion may impact au-
tomated morphological estimates at least partially by decreasing grey-
white tissue contrast (Pardoe et al., 2016). While there does appear to
be broad similarities across image processing software to the extent that
this has been tested, specific differences across platforms have also been
reported, such as increases in thickness in medial occipital lobe in scans
with high motion artefact in FreeSurfer (Alexander-Bloch et al., 2016;
Pardoe et al., 2016) but not in CIVET (Alexander-Bloch et al., 2016).
This begs the question of which measurement of fMRI motion is used as

a proxy, as well as exactly how scans are assessed to be qualitatively
motion-free, underscoring the need for transparency and consistency in
these areas.

The issue of motion-related bias is particularly problematic for de-
velopmental studies, given evidence that younger individuals on
average show higher in-scanner motion than older individuals (Power
et al., 2012; Satterthwaite et al., 2013). The potential impact of this
issue on the longitudinal imaging literature is unclear. The effect size of
minimal motion on cortical thickness measurements appears to be re-
latively small compared to the effect size of age in developmental po-
pulations (Alexander-Bloch et al., 2016). Based on evidence for de-
creasing motion with age, and decreasing cortical thickness across the
second decade of life, it is unlikely that motion would account for pu-
tative reductions in cortical thickness in adolescence. However, it is
unclear what the impact of motion could be on developmental trajec-
tories starting in childhood. It can thus not be ruled out that motion-
related bias could be implicated in previous reports of increases in
cortical thickness through late childhood and reports of regionally and
developmentally heterogeneous cortical thickness peaks. This hypoth-
esis is supported by a recent study investigating the impact of QC
procedures on developmental trajectories of cortical thickness across
ages 5–22 years (Ducharme et al., 2016). While quadratic trajectories
were identified when using a standard QC procedure (i.e. excluding
scans with gross deformation of brain anatomy, large truncated brain
areas, or diffuse areas of problematic grey-white boundaries definition),
many of these non-linear patterns were no longer present when using a
stringent QC procedure (i.e. excluding scans with localized areas of
imprecise cortical definition, inclusion of white matter within cortex, or
vice versa; see Fig. 2).

In general, scans with frank, qualitative motion artefact have greatly
increased impact on morphometric estimates; but critically, motion-
related bias appears to persist even within scans that are qualitatively
free of motion. However, there is currently no standard, agreed-upon,
protocol for QC of structural scans. Backhausen et al. (2016) recently
proposed one such protocol that shows promise, recommending that the
degree of post-processing QC be determined by the rating of pre-pro-
cessed images. The adoption of such protocols will help increase
transparency and reporting in manuscripts, which is currently lacking
in the field as evident from the studies reviewed in this paper. Indeed,
several reviewed studies did not include any description of QC. Others
tended to focus on the quality of either raw or processed images, but
rarely both (e.g., Cao et al., 2015). Limited detail was also provided
about the criteria employed and manual corrections undertaken. As an
exception to this, a couple of studies provided detailed information,
including figures, about their QC procedures in supplementary mate-
rials (e.g., Ducharme et al., 2016; Raznahan et al., 2014). Such in-
creased transparency and reporting in manuscripts will help us further
our understanding of how different QC methods might impact the re-
sults of developmental structural imaging studies.

6. Image processing strategy

There are several programs available for processing anatomical
brain images for morphometric analysis (see Table 2 in Mills and
Tamnes, 2014). While earlier studies used a variety of manual and
automated tools (Table 1), CIVET (http://www.bic.mni.mcgill.ca/
ServicesSoftware/CIVET) and FreeSurfer (http://surfer.nmr.mgh.
harvard.edu/) are the most commonly used contemporary automated
software packages (the former used in 4/34 studies and the latter used
in 16/34 studies). FreeSurfer is an openly available software package
that provides global, regional and vertex-wise estimates of several brain
measures. It offers a longitudinal processing stream that generates a
within-subject template to increases reliability and statistical power
(Reuter et al., 2012; Reuter and Fischl, 2011). However, this processing
stream was developed for adult populations, and thus assumes in-
tracranial volume (ICV) is stable in the participant across time, which is
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a potential drawback given that there is evidence that ICV continues to
increase up to mid-adolescence (Mills et al., 2016).

CIVET provides conceptually similar anatomical estimates to
FreeSurfer, but does not currently have a longitudinal pipeline. This is
an important consideration given that it has been shown that using
longitudinal pipelines may change developmental trajectories by re-
ducing noise (i.e., variance) by taking advantage of the longitudinal
consistency of the data (Aubert-Broche et al., 2013). Other less fre-
quently used programs that facilitate longitudinal analysis include
QUARC (Quantitative Anatomical Regional Change; Tamnes et al.,
2013) and the LL Method (Aubert-Broche et al., 2013), which use a
within-subject template for registration purposes alone and thus allows
for variation in head size over time. Nevertheless, FreeSurfer’s (v5.3
onwards) longitudinal pipeline is the only one thus far that can be
applied to scans from participants with single time points, thus ensuring
consistent processing of all images used in analyses such as multilevel
modelling.

As discussed above, there are acquisition methods that can be used
to attempt to deal with hardware/software upgrades in longitudinal
studies. While multi-site projects have used site as a covariate in ana-
lyses to account for potential biases, post-acquisition processing steps
have also been applied. For example, FreeSurfer’s longitudinal stream
and the LL Method have been used to assess potential scanner upgrade
bias by examining change in subsets of participants before and after
upgrade (Aubert-Broche et al., 2013; Dennison et al., 2013; Mutlu et al.,
2013; Vijayakumar et al., 2016a). Methods have ranged from calcu-
lating Cronbach’s alpha or change values at the vertex level (Aubert-
Broche et al., 2013; Mutlu et al., 2013), to estimating test-retest re-
producibility errors for individual ROIs and testing whether the amount
of change observed in the study population was likely to have occurred
over and above those expected from upgrade effects alone (Dennison
et al., 2013; Vijayakumar et al., 2016a).

In summary, while some work has been done to assess the effects of
different software on age-related differences in structural brain

measures (Walhovd et al., 2016), further investigation is needed to
assess such effects across the full range of software packages and ver-
sions, and also with longitudinal data. Of note, recent work has re-
analyzed existing longitudinal datasets using a single software package
(Mills et al., 2016). While this is a positive step in elucidating potential
software differences, other factors contributing to differences between
studies make it difficult to assess the influence of different software
packages (and versions) on current findings.

7. Statistical analyses

7.1. Analytic methods

Given the longitudinal nature of data collected in this field, statis-
tical analyses need to appropriately model interdependencies of ob-
servations within subjects. While there are multiple different methods
to do so, most studies have employed multilevel modelling (MLM; also
referred to as mixed-effects models), including 21 of the 34 studies
reviewed in Table 2. MLM is particularly suited to ALD studies that
collect data from individuals at different ages and differing time in-
tervals, which in combination with missing data, result in unbalanced
datasets. MLM is able to handle all available data in these instances, and
consequently increases power to detect developmental effects (Gibbons
et al., 2010; Singer and Willett, 2003; Verbeke and Molenberghs, 2000;
West et al., 2006). Furthermore, missing observations in SCD studies
means that the final dataset might still be unbalanced in nature, thus
highlighting the value of this methodology (e.g., Vijayakumar et al.,
2016a). Newer studies are beginning to employ more flexible ap-
proaches to modelling, such as spline modelling (e.g., Alexander-Bloch
et al., 2014; Tamnes et al., 2013), which might provide better fit of the
underlying data by stitching together several basis functions that best
fit segments of the developmental span of interest (Reiss et al., 2014;
see Fig. 3 for an illustration of these trajectories).

A small number of studies have chosen to calculate a change (i.e.,

Fig. 2. Ducharme et al.’s (2015) investigation of
nonlinear developmental trajectories at different le-
vels of quality control. Greatest quadratic or cubic
trajectories (areas highlighted in different shades of
blue) were evident with (a) no quality control, fol-
lowed by (b) standard quality control. In compar-
ison, minimal nonlinear trajectories were identified
when (c) employing stringent quality control. (For
interpretation of the references to colour in this
figure legend, the reader is referred to the web ver-
sion of this article.)
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difference or percentage change) score and conduct a single sample t-
test on this index of development (5 out of 34 studies; e.g., Sowell et al.,
2004; van Soelen et al., 2012). In ALD studies, this approach has also
been used to examine whether age is associated with calculated change
indices (Tamnes et al., 2013), thus providing valuable information
about the amount of change occurring at different ages. However, the
value of general linear models decreases with increasingly complex
samples with multiple waves of assessments (i.e., beyond a two wave
study), variation in timing of assessments, and missing data. Therefore,
it is not surprising that most studies have chosen to employ MLM,
which will be the predominant focus of this section.

7.2. Trajectories and peaks

MLM uses a likelihood-based approach to statistics that provides
information about the relative usefulness of a model to describe data in
comparison to another model. It does not, however, provide informa-
tion about the absolute worth of any given model. Consequently,
findings are influenced by the set of models chosen a priori to be in-
vestigated. The developmental trajectories modeled in any given study
are generally based on the study design and nature of the observations.
While ALD studies can examine complex non-linear trajectories at a
group-level due to variance in participants’ age during assessments,
modelling in SCD designs is limited by the number of repeated assess-
ments per individual. Trajectories examined by any given study are
often also influenced by prior research and prevalent theories in the
field. As such, there can be a tendency for studies to examine first- and
higher-order polynomial models, arising from early studies in this field
identifying nonlinear patterns of brain development (Giedd et al., 1999;
Gogtay et al., 2004; Shaw et al., 2008). This is evident in 15 of the 21
studies listed in Table 2 that employed MLM.

Polynomial models are popularly employed because they are able to
give a rough approximation of the pattern of change in a dataset with
few within-participant observations. The simplest first-order model
with a linear age effect enables us to determine whether a brain mea-
sure is decreasing or increasing across development. Higher-order
models impose inflection points, with a quadratic term creating a U or
inverted-U pattern, and a cubic term creating an S shaped curve (see
Fig. 3 for an illustration of these trajectories). These inflection points
have been used to provide a point estimate for when a certain brain

measure “peaks.” However, there are several limitations to this proce-
dure. “Peaks” or inflection points associated with nonlinear trajectories
are often statistically reported and interpreted through solving higher-
order age functions, as evident in 11 of the studies reported in Table 2.

Inflection points are theoretically appealing, being commonly in-
terpreted as sensitive periods characterized by significant brain devel-
opment. However, there is a possibility that inflection points are an
artefact of the modelling strategy or age range studied (Fjell and
Walhovd, 2011), as opposed to a true effect in the data. Varying “peaks”
have been identified within the same dataset when studies use differing
inclusionary criteria and thus report on differing subsamples from the
same project. For example, The NIMH CPB sample has reported dif-
ferent peak ages for frontal grey matter volume, with the group re-
porting younger peaks as the dataset grew in sample size over the years:
Giedd et al. (1999) 12.1 years in males and 11.0 years in females;
Lenroot et al. (2007) 10.5 years in males and 9.5 years in females.
Differences in time intervals between scans are also likely to influence
identified “peaks”, as shorter time intervals between scans might be
more sensitive to subtle non-linear development that might not be
evident using longer intervals. Studies should be mindful of these issues
when discussing peaks, and at the very least, report confidence intervals
around these point estimates (e.g., Raznahan et al., 2014).

7.3. Model selection

In order to choose between different polynomial trajectories, two
main strategies have been employed. Many of the seminal early studies
used a top-down approach whereby the most complex developmental
model was chosen to describe the data based solely on the significance
of the polynomial parameter (Giedd et al., 1999; Gogtay et al., 2004;
Lenroot et al., 2007). However, more recent studies have used model fit
indices or likelihood ratio tests to ensure the most parsimonious model
is selected (i.e., choosing a less complex model when the addition of
parameters does not improve model fit (e.g., Mills et al., 2016; Mutlu
et al., 2013; Vijayakumar et al., 2016a). These different approaches
may contribute to some of the variation in results, as non-linear de-
velopmental trajectories for certain measures (i.e., cortical thickness)
identified in studies using the top-down approach have not consistently
been replicated in more recent studies employing model-fit indices
(e.g., linear trajectories identified by Ducharme et al., 2016; vs.

Fig. 3. Frontal lobe volume of the Neurocognitive Development sample (Tamnes et al., 2013) modeled using different polynomial and spline modelling techniques. Figures represent a)
linear, b) quadratic, and c) cubic polynomial trajectories, as well as spline modelling with d) three and c) five knots.
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predominantly cubic trajectories identified by Shaw et al., 2008).
However, we note that given these studies differ on a number of
parameters, it is not possible to specifically attribute variation in results
to the issue of model selection alone.

Traditionally, MLM does not give preference to a specific model
selection approach. Nevertheless, top-down approaches are best used
when there is a strong theory to guide them (see King et al., this issue).
But a problem can arise when guiding theories, themselves, are based
solely on top-down approaches that bias results to more complex
models. This is evident in our field, where the predominant theories
about anatomical brain development (e.g., nonlinear trajectories) were
inferred from studies using a top-down approach. This had a subsequent
ripple-down effect as latter studies also employed similar top-down
approaches, thus perpetuating the issue. In total, we identified 12 stu-
dies that used the top-down approach for selecting between different
age-related trajectories, in comparison to only 5 studies using model fit
indices. Nevertheless, there does appear to be a shift with more recent
studies increasingly employing model fit indices into their investiga-
tions on brain development, and we need to strive to incorporate these
findings into our theories in order to progress the field. One way to
compare across studies using different model selection criteria would be
to reduce emphasis on the actual model fit (i.e., cubic, quadratic or
linear) and instead focus on the overall pattern of change. This would,
for example, emphasize similar periods of stability/change between
quadratic and cubic trajectories, or similar overall direction of change
between first- and higher-order polynomial trajectories. Further, the
inclusion of confidence intervals lessens the stark differences between
different polynomial trajectory shapes, and highlights the lack of spe-
cificity that can be derived from model fits (e.g., Mills et al., 2016).

7.4. Group vs individual differences

Interestingly, all the identified studies in Table 2 that employed
MLM only obtained group-level (i.e., fixed effect) developmental tra-
jectories. Although subject-level trajectories can be modeled as random
effects to account for interdependencies in the data (Pinheiro and Bates,
2013; Verbeke and Molenberghs, 2000), only one study was identified
that employed this technique (Aubert-Broche et al., 2013), with all
others only incorporating a random effect for the subject (i.e. random
intercept). Information regarding differences in model fit indices when
incorporating random slopes would provide valuable information about
variability between individuals in their trajectories. Furthermore, stu-
dies considering cross-level interactions between random and fixed ef-
fects would provide novel insight into whether individual differences
interact with group-level heterogeneity in meaningful ways (e.g., Ordaz
et al., 2013). Most studies have examined the interaction between age
and sex in predicting brain structure, for example, but the fixed effect of
age has exclusively been used in this interaction term, thus only uti-
lizing information about group-level differences in the age term. Such
group-level analysis is often necessitated in ALD designs that are in-
terested in modelling complex developmental trajectories that cannot
be examined at an individual level (i.e., cubic trajectories modeled
despite some individuals only having three or less repeat assessments).

A small number of studies have tried to address this issue of intra-
individual variability by describing both group- and individual-level
change in their sample. For example, 3 out of the 34 identified studies
in Table 2 graphically illustrate the percentage of individuals that ex-
hibit increases, decreases, or no change, in a structure over time.
Dennison and colleagues (2013) apply this technique to a SCD study,
whereas Lebel and Beaulieu (2011) and Zhou et al. (2015) bin their
subjects into age groups given the ALD nature of their sample. It is also
beneficial to report the magnitude of change, which has been addressed
in some studies using plots of raw within-subject change over time.
However, the usefulness of this strategy can also vary based on other
study characteristics (e.g., difficult with vertex-wise as opposed to re-
gion of interest analyses).

Analyses of difference scores (e.g., annualized percentage change),
described above, are also generally conducted at the group level.
However, reporting variance in these measures, along with means,
would provide some indication of the level of individual differences in a
sample. To our knowledge, none of the current studies have done so.
Percentage change scores are also valuable when interpreting the as-
sociation between different developmental variables (i.e., how are in-
dividual differences in development on a particular measure associated
with change in another measure). For example, one of the reviewed
studies employed difference scores to qualitatively explore, through
graphical illustration, the relative contributions of changes in thickness
and surface area to volumetric development (Raznahan et al., 2011b).

In summary, most studies fail to address the issue of individual
differences in brain development, and those that do so use different
strategies, each with their own benefits and limitations. While it is not
possible to recommend one particular strategy, it is important that
studies provide some report of individual variability in their sample.
The role of individual differences will also become increasingly im-
portant as attention turns towards understanding interactions between
group-level characteristics (e.g., environment, genes) and intra-in-
dividual variation in trajectories.

7.5. Specificity of analyses

Statistical analyses can be conducted at differing levels of spatial
specificity, varying from global to voxel/vertex-level indices. Between
these two extremes lies the lobar- and parcellation-based approaches,
which groups voxels/vertices into regions based e.g. on anatomical
landmarks. A review of studies in Table 2 revealed roughly similar
distribution of these approaches, with 10 studies each using global,
lobar and vertex-wise methods and 11 studies using parcellations. Note
that many studies chose to employ more than one approach, in addition
to a smaller subset that employed region-of-interest analyses. While
voxel/vertex-level analyses provide the greatest spatial resolution, the
parcellation-based approach can be easier to interpret given that uni-
form developmental patterns are attributed to each structurally
homologous region, thus providing a middle ground between vertex-
level and lobar/global measures. Vertex-level analyses typically employ
a smoothing kernel to reduce noise, and prior research has shown that
the size of kernels can impact on scan-rescan estimates (Han et al.,
2006). However, the majority of studies do not report on the size of this
kernel. While parcellation-based approaches do not require these
smoothing procedures as boundaries are already defined based on
anatomical landmarks, there are several parcellations to choose from,
also with differing spatial resolutions (and associated boundary-de-
fining procedures; e.g., FreeSurfer’s Desikan-Killiany vs Destrieux at-
lases vs Human Connectome Project’s multimodal parcellation).

It is standard that vertex-level analyses involve correction for mul-
tiple comparisons, given that analyses are conducted across tens of
thousands of data points, using procedures such as false discovery rate,
random field theory or Monte Carlo simulations. However, these tend to
be conducted on p-values of a single model, as opposed to model fit
indices. On the other hand, studies using parcellation-based data have
tended to focus on model-selection procedures without correction for
multiple-comparisons (as evidenced by all but four of the studies in
Table 2 that employed this approach), even though the coarsest par-
cellation map typically outputs a large number of different regions to
test. While this approach might be acceptable given that likelihood
based analyses are theoretically distinct from null-hypothesis sig-
nificance testing, at the very least, these findings need to be discussed
carefully so that they are interpreted in terms of relative evidence as
opposed to absolute conclusions (i.e., without reference to the com-
parison models). Plotting of effect sizes across different parcellations
would also provide complementary information about the degree of
change across the brain. Multivariate analyses that include all parcels
within the same model are promising approaches that overcome the

N. Vijayakumar, et al. Developmental Cognitive Neuroscience 33 (2018) 129–148

139



Ta
bl
e
3

D
et
ai
ls
of
lo
ng
itu
di
na
ls
tu
di
es
in
ve
st
ig
at
in
g
pu
be
rt
al
m
at
ur
at
io
n
in
re
la
tio
n
to
st
ru
ct
ur
al
br
ai
n
de
ve
lo
pm

en
t.

St
ud
ie
s

N
(M
)

N
Sc
an
s,
n
pe
r

su
bj
ec
t,
in
te
rv
al
,

ra
ng
e

A
ge

(y
)

Im
ag
e
pr
oc
es
si
ng

so
ftw

ar
e
(v
er
si
on
)

Pu
be
rt
al
m
ea
su
re
s

M
ea
su
re
s:
vo
l/

sa
/c
t/
ot
he
rs

Sp
ec
ifi
ci
ty
of

an
al
ys
es

In
de
x
of
an
al
ys
es
:a
bs
ol
ut
e

or
ch
an
ge

va
lu
es
,w

ho
le

br
ai
n
co
rr
ec
tio
n

St
at
is
tic
al
an
al
ys
es
:a
na
ly
si
s
m
et
ho
d
(s
of
tw
ar
e)
va
ri
ab
le
s

m
od
el
fit

tr
aj
ec
to
ri
es
m
ul
tip
le
co
m
pa
ri
so
n

N
gu
ye
n
et
al
.

(2
01
3a
)
(N
IH

M
RI
)

28
1
(1
17
)

47
9,
1–
3
pe
r

su
bj
ec
t,
2
ye
ar

in
te
rv
al

4–
22

CI
VE
T

St
ag
e
Te
st
os
te
ro
ne

CT
Ve
rt
ex
-w
is
e

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
Su
rf
St
at
,E
ffe
ct
s:
pu
be
rt
y
(t
es
to
st
er
on
e,

st
ag
e)
,a
ge
,s
ex

an
d
he
m
is
ph
er
e
in
te
ra
ct
io
ns
,c
on
tr
ol
lin
g

fo
r
W
BV
,t
es
to
st
er
on
e
co
lle
ct
io
n
in
te
rv
al
,T
ra
je
ct
or
ie
s:

lin
ea
r,
M
C:
RF
T

N
gu
ye
n
et
al
.

(2
01
3b
)
(N
IH

M
RI
)

25
5
(1
12
)

40
7,
1–
3
pe
r

su
bj
ec
t,
2
ye
ar

in
te
rv
al

4–
22

CI
VE
T

St
ag
e
Te
st
os
te
ro
ne

D
H
EA

CT
Ve
rt
ex
-w
is
e

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
Su
rf
St
at
,E
ffe
ct
s:
1.
D
H
EA
,a
ge

an
d
se
x

in
te
ra
ct
io
ns
,c
on
tr
ol
lin
g
fo
r
W
BV
,s
al
iv
ar
y
co
lle
ct
io
n

tim
es
,s
ca
nn
er
,h
an
de
dn
es
s;
2.
D
H
EA
,t
es
to
st
er
on
e
an
d
se
x

in
te
ra
ct
io
ns
.,
Tr
aj
ec
to
ri
es
:l
in
ea
r,
M
C:
RF
T

G
od
di
ng
s
et
al
.

(2
01
4)
(N
IM
H

CP
B)

27
5
(1
58
)

71
1,
≥
2
pe
r

su
bj
ec
t,
2
ye
ar

in
te
rv
al

7–
20

Fr
ee
Su
rf
er
5.
1

St
ag
e

Vo
lu
m
e

Se
gm

en
ta
tio
n

A
bs
ol
ut
e
an
d
pe
rc
en
ta
ge

ch
an
ge

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:p
ub
er
ta
ls
ta
ge
,a
ge
,a
nd

in
te
ra
ct
io
ns

(s
ep
ar
at
e
m
od
el
s
fo
r
m
al
es
an
d
fe
m
al
es
),

M
od
el
se
le
ct
io
n:
st
ep
-d
ow

n
fo
r
ag
e,
LR
T/
A
IC

fo
r

ag
e*
pu
be
rt
y
m
od
el
s,
Tr
aj
ec
to
ri
es
:l
in
ea
r,
qu
ad
ra
tic
,c
ub
ic

H
er
tin
g
et
al
.

(2
01
4)
U
Pi
tt

12
6
(6
3)

16
2,
2
pe
r

su
bj
ec
t,
2
ye
ar

in
te
rv
al

10
–1
4

Fr
ee
Su
rf
er
5.
1

St
ag
e
Te
st
os
te
ro
ne

Es
tr
ad
io
l

CV
G
lo
ba
lR

O
Is

A
bs
ol
ut
e

M
ix
ed

m
od
el
s:
R,
Eff
ec
ts
:a
ge
,s
ex
,p
ub
er
ty
,a
nd

in
te
ra
ct
io
ns
,c
on
tr
ol
lin
g
fo
rI
CV

,M
od
el
se
le
ct
io
n:
LR
T
an
d

A
IC
,T
ra
je
ct
or
ie
s:
lin
ea
r

H
er
tin
g
et
al
.

(2
01
5)
U
Pi
tt

81
(3
3)

16
2,
2
pe
r

su
bj
ec
t,
2
ye
ar

in
te
rv
al

10
–1
4

Fr
ee
Su
rf
er
5.
1

St
ag
e
Te
st
os
te
ro
ne

Es
tr
ad
io
l

CT
,S
A

Ve
rt
ex
-w
is
e

A
ve
ra
ge

an
d
pe
rc
en
ta
ge

ch
an
ge

Li
ne
ar
re
gr
es
si
on
s:
Fr
ee
Su
rf
er
,E
ffe
ct
s:
pu
be
rt
al
ch
an
ge
,

se
x,
an
d
in
te
ra
ct
io
ns
,c
on
tr
ol
fo
r
ba
se
lin
e
ag
e,
pu
be
rt
y

(a
nd

sc
an

in
te
rv
al
fo
r
m
od
el
s
pr
ed
ic
tin
g
av
er
ag
e

m
ea
su
re
s)
,T
ra
je
ct
or
ie
s:
lin
ea
r,
M
C:
M
on
te
Ca
rl
o

si
m
ul
at
io
ns

N
B:
St
ud
ie
s
ar
e
gr
ou
pe
d
by

pr
oj
ec
t,
an
d
su
bs
eq
ue
nt
ly
or
de
re
d
by

ye
ar

pu
bl
is
he
d
an
d
au
th
or

su
rn
am

e.
A
IC
=
A
ka
ik
e
In
fo
rm
at
io
n
Cr
ite
ri
a;
CT

=
co
rt
ic
al
th
ic
kn
es
s;
CV

=
co
rt
ic
al
vo
lu
m
e;
D
H
EA

=
D
eh
yd
ro
ep
ia
nd
ro
st
er
on
e;
IC
V
=
in
tr
ac
ra
ni
al

vo
lu
m
e;
LR
T
=
lik
el
ih
oo
d
ra
tio

te
st
;N

IH
=
N
at
io
na
lI
ns
tit
ut
e
of
H
ea
lth
;N

IM
H
CP
B
=
N
at
io
na
lI
ns
tit
ut
e
of
M
en
ta
lH

ea
lth

Ch
ild

Ps
yc
hi
at
ry
Br
an
ch
;R
O
I=

re
gi
on

of
in
te
re
st
;R
FT

=
Ra
nd
om

Fi
el
d
Th
eo
ry
;S
A
=
su
rf
ac
e
ar
ea
;U

Pi
tt
=
U
ni
ve
rs
ity

of
Pi
tt
sb
ur
gh
.

N. Vijayakumar, et al. Developmental Cognitive Neuroscience 33 (2018) 129–148

140



issue of multiple comparisons (Ziegler et al., 2016).

7.6. Statistical programs

There are a number of software programs available to conduct
statistical analyses–either specialized or not–for neuroimaging data,
and each with their own strengths and weaknesses. FreeSurfer provides
easily accessible code for general linear modelling, and also computes
change metrics (i.e., annualized percentage change) that can be used
within such a framework. While FreeSurfer does not incorporate MLM
into its main platform, there is a separate Matlab toolbox to support
these analyses. SurfStat is another Matlab toolbox supporting MLM that
was originally created for use with CIVET-processed data. Both tool-
boxes provide easily accessible methods to conduct MLM at a vertex-

wise level across the cortical surface, including tools to correct for
multiple comparisons (i.e., false discovery rate and random field theory
correction). However, neither program supports the use of model fit
indices to ascertain the best-fitting developmental trajectory. Rather,
these programs are limited to a top-down approach for model selection.

In order to overcome this limitation, one of the reviewed studies
employed both vertex-level top-down model selection and parcellation-
based indices of fit selection, finding similar developmental maps with
both approaches (Vijayakumar et al., 2016a). Other studies have em-
ployed MLM within general statistical packages (i.e., nlmefit in Matlab
and lme4 or nlme in R) to conduct vertex-level analyses with a model-fit
approach, with one study additionally correcting for multiple compar-
isons across the cortical mantle following model selection (i.e., nlmefit
in Matlab followed by Monte Carlo simulations in FreeSurfer, Mutlu
et al., 2013). Thus while it is possible to overcome these software
limitations using a combination of different approaches and programs,
the development of statistical programs specific to longitudinal neu-
roimaging analyses with more sophisticated options would be a wel-
come addition to the field (see Madhyastha et al., this issue).

8. Treatment of important covariates

8.1. Sex differences

The majority of studies in this field have investigated sex differences
in developmental trajectories of brain structure (evident in 22 out of the
34 studies in Table 2), while a smaller number (3 out of 34 studies)
have chosen to instead control for sex in their analyses. Almost all
studies investigating sex differences have identified developmental
trajectories across the sample prior to investigating whether the in-
corporation of sex main effects or interactions with age improve model
fit. However, this approach precludes the identification of different
trajectories (e.g., linear versus quadratic) between the sexes, and as-
sumes that males and females exhibit similar developmental patterns
(e.g., both present with linear growth, although rate of growth can
differ). Furthermore, if differing developmental patterns do exist,
identification of one developmental trajectory for the entire sample
might not be truly reflective of either sex. In order to overcome this
issue, some studies have chosen to analyze males and females sepa-
rately (e.g., Goddings et al., 2014). However, these are limited to dis-
cussing qualitative differences between the sexes. Future studies may
benefit from combining these approaches, as implemented by Lebel and
Beaulieu (2011), such that each sex is first examined separately and
only combined if similar trajectories are identified (to examine devel-
opment of the group as a whole, as well as potential sex differences).

Research on sexual dimorphism in the brain is also influenced by if,
and how, studies account for differences in global brain size. Males
exhibit larger global brain sizes than females from childhood through to
adulthood (Giedd et al., 2012; Jahanshad and Thompson, 2017; Paus
et al., 2017). Therefore, studies attempt to control for overall brain size
to reduce the risk of observing structural brain differences between
sexes that is solely due to differences in overall brain size. These
methodologies, and their impact on sex differences, are further dis-
cussed in the following section.

8.2. Whole brain correction

As highlighted in Table 2, some studies choose to account for global
brain size in their analyses, but many choose to not do so. There are a
number of issues faced by researchers when deciding to correct for
global brain size, including potential measures to use and methods to
employ. When considering methodology, most studies have included
global brain size as a covariate in statistical analyses (6 out of 34 studies
reviewed), though some have chosen to correct using the proportion
method that divides regional size by global size (5 out of 34 studies
reviewed). The former covariate method is often preferred for vertex-

Table 4
Guidelines for reporting methodological detail in longitudinal structural brain imaging
studies.

Sample

•Report number of participants (total and per sex)• Report total number of scans, and broken down by number of assessments• Report mean number (and range) of scans per participant• Report timing of scans (i.e. age of measurements)• Report details on sampling strategy:
○ Type and aim of design for structured ALD studies.
○ Consider generalizability of sample during recruitment and report details.
○ e., SES, ethnicity and race characteristics
○ information on missing data and attrition

• Report criteria for inclusion in study from the larger project’s sample pool (if
relevant).

Acquisition

•Consider implementation of protocols to improve child/adolescent comfort, thus
reducing motion, and report details.

• Consider acquisition techniques (e.g., fMRI) for motion-correction.• Minimize changes in scanner variables across time and across participants.
○ If not possible, account for scanner differences in analyses or conduct inter-
scanner reliability studies.

Processing

•Employ same software (and version) across all images within a study (i.e., also
across time in longitudinal studies)

• Give preference to software that creates subject-specific templates (i.e., software
that uses longitudinal streams)

• Report software versions.• Report on quality control procedure details:
○ Inspection of the quality of raw images, including procedure for inspection,
criteria used to determine exclusion, and number of scans excluded.

○ Inspection of the quality of processed images, including procedure for inspection,
criteria used to determine exclusion, and number of scans excluded.

○ Extent of manual intervention of processed images, including the protocol and
number of scans that were successfully processed post-intervention and included
in analyses.

Analyses

•Account for interdependencies of scans within each subject.• Specific to MLM:
○ Employ model fit indices or LRT to identify the most parsimonious model, and
report these statistics.

• Use confidence intervals if reporting ages of “peak” estimates.• Examine the possibility of differing trajectories across groups (e.g., sex) by
analyzing each group separately, and only combining groups if they exhibit the
same trajectory.

• Consider individual differences through• comparison of models with and without random effects in MLM

• reporting variance in change indices (e.g., annualized percentage change)• Appropriately account for the multivariate nature of the data by:• correcting for multiple comparisons• conducting multivariate analyses• If correcting for global brain size:• Report analyses using both raw and corrected brain measures.

• Take into account different effects of ICV and WBV on group differences.

• Consider developmental scaling relationships between global and regional
measures

Conclusions

•Interpret findings within the bounds of the analytic techniques
○ With MLM, discuss results in terms of “better fit” (in comparison to other
models), consistent with the theory of likelihood-based analyses.
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wise analyses as it is easier to implement in comparison to the latter
approach, which would require calculation of adjusted brain measures
across the cortical mantle prior to statistical analyses. However, an
important limitation of both these popular methods is the assumption of
linear scaling between regional and global brain size.

Scaling factors in the brain are constrained by metabolic and phy-
sical principles, such that neuronal size and other components of brain
anatomy undergo a non-uniform enlargement of subcomponents with
increasing overall size (Toro et al., 2009). These nonlinear relationships
between structure and size, referred to as allometric principles, are
demonstrated by exponential increases in white-to-grey matter ratios at
a rate of 4:3 with increasing total brain volume (Zhang and Sejnowski,
2000). This might account for greater grey-to-white matter ratio in
females due to their smaller overall brain size, supported by findings of
minimal sex differences in this ratio when accounting for differences in
overall brain size (Leonard et al., 2008). On a more regional scale,
cross-species work has shown nonlinear scaling of subcortical volume
with increasing whole brain volume (WBV; Finlay and Darlington,
1995), which was confirmed by a recent investigation in humans
(Reardon et al., 2016). Furthermore, violations of these allometric
principles by commonly used proportion and covariate correction
methods confounds the effects of nonlinear scaling and group effects
(i.e., sex) on subcortical volume (Reardon et al., 2016). Greater con-
sideration of regional allometric scaling laws may therefore provide

greater clarity into the specificity of findings on sex (and other group)
differences.

Another important issue for developmental neuroimaging is that
global brain size continues to change during adolescence, and differ-
ences in development rates across the brain could bias results when
controlling for global size. Moreover, group differences in global mea-
sures could be a reflection of earlier maturation in one group, thus
potentially eliminating differences of interest when it is controlled. In
order to deal with this problem, some studies have controlled for ICV as
initial research suggested it stabilized between early and mid-adoles-
cence (Courchesne et al., 2000; Pfefferbaum et al., 1994). Specifically,
three out of 10 studies that chose to control for global brain size in
Table 2 used ICV. In comparison, 8 of these studies controlled for WBV
(including one that employed both measures). However, as mentioned
above, Mills and colleagues (2016) found that both ICV and WBV
continued to develop during adolescence. Furthermore, controlling for
these two measures influenced the resultant regional (i.e., grey vs white
matter volume) trajectories differentially, and these two measures had
varying impacts on sex differences based on the correction method
employed. While both ICV and WBV accounted for sex differences when
using the proportion method (i.e., the addition of sex to proportion-
corrected models did not improve model fit), WBV alone was able to do
so with the covariance method. Considered within the context of cur-
rent findings in the literature, these results suggest that the estimate of

Box 2
Structural covariance.

Structural covariance is an increasingly used methodology, referring to correlations across people in the morphological properties of pairs
of brain regions (or larger brain networks; Alexander-Bloch et al., 2013a; Evans, 2013). While cortical thickness and grey matter volume
have been the most commonly examined morphological substrates, there is evidence that other phenotypes such as cortical surface area
may have specific patterns of covariance (Sanabria-Diaz et al., 2010). Studies of children and adolescents have begun to map develop-
mental changes in structural covariance. Generally, structural covariance appears to become more widely anatomically distributed over
time, but different sub-networks also follow different developmental patterns (Khundrakpam et al., 2013; Zielinski et al., 2010). For
example, a study of 5–18 year-olds found grey matter covariance of primary sensory and motor areas to peak in early adolescence, while
covariance patterns of regions subserving higher cognitive functions expanded linearly throughout the age range (Zielinski et al., 2010).
The balance between integrative and segregative graph-theoretic properties, derived from large-scale covariance of cortical thickness
between regions, was also reported to follow a nonlinear trajectory in 5–18 year olds (Khundrakpam et al., 2013). Developmental studies of
structural covariance may reflect developmental changes in brain function, for example, a negative association was found between
amygdala volume and prefrontal cortical thickness in children and adolescents, mirroring reports of amygdala functional connectivity
(Albaugh et al., 2013).

Complementary to these cross-sectional studies, longitudinal studies have used the approach of ‘maturational covariance’–covariance in
longitudinal changes across subjects. Similar to cross-sectional studies, these longitudinal analyses have found regionally heterogeneous
maturational covariance, with stronger correlations reported with association areas compared to primary sensory areas of cortex (Raznahan
et al., 2011a). These statistical relationships also appear to recapitulate known functional relationships, for example, longitudinal changes
in hippocampal volume were found to covary with longitudinal changes in cortical areas involved in episodic memory (Walhovd et al.,
2015). Maturational covariance, reflecting coordinated development between brain regions, may in fact cause cross-sectional structural
covariance (Alexander-Bloch et al., 2013b), as a generalizable biological link may hold between phenotypic covariance and coordinated
maturation (Riska, 1986). In the brain, covariance patterns are likely to be established very early in development, and a recent study of
children under two years old found maturational covariance to predate structural covariance (Geng et al., 2016). Notably, longitudinal
studies to date have investigated the covariance of longitudinal phenotypes, as opposed to longitudinal changes in structural covariance per
se, as covariance patterns have only been defined at the group level. Novel methodological approaches may be required to optimally
leverage longitudinal data in future analyses.

In general, developmental studies of structural covariance confront an expanded array of methodological issues in addition to those of
developmental anatomical imaging in general. An analogy can be drawn between functional connectivity (derived from correlations across
time in brain activity) and structural covariance (derived from correlations across people in brain morphology). Comparable methodo-
logical principals should thus be applied when using multivariate analyses such as seed-based regression, principal components or graph-
theoretical analyses. Brain parcellation may particularly impact covariance studies as the size of a brain region may influence its covariance
patterns; we therefore advocate the use of uniformly-sized brain regions when possible. Some estimate of global effect such as total brain
volume is generally also included as a covariate in studies of structural covariance, as are gender and age within experimental groups.
Ideally, pending a consensus regarding appropriate statistical approaches, analyses will be presented both with and without covariates
likely to impact the outcome of interest. Although specific studies of the effect of motion artefact on structural covariance have not been
performed, it is likely that regions disproportionately affected by motion will manifest artefactually elevated covariance. For future re-
search, the complexity of these methodological issues will necessitate a proportional investment in both rigor and transparency.
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global brain size employed by studies likely influenced the sex effects
that were observed. Therefore, it is considered best practice to present
both raw and corrected brain measures when examining the influence
of sex on brain development (e.g., Dennison et al., 2013). Furthermore,
to our knowledge, there has been no investigation into the effects of
controlling for change in global brain size. While the scaling factors
discussed above will still impact this methodology, it might be a valu-
able area for investigation as it accounts for continued changes in global
brain size over development.

Global volumetric estimates are sometimes also used to control for
whole brain size in analyses of non-volumetric measures (i.e., cortical
thickness). This approach is not without fault as volume is driven by
both thickness and surface area, with some research suggesting that it is
largely driven by surface area (Im et al., 2008; Raznahan et al., 2011b).
Only minor change has been identified in cortical thickness with en-
largements of brain size, consistent with theoretical models by Van
Essen (1997) and Rakic (1988). These findings and theories question
the influence of increasing brain size on cortical thickness. On the other
hand, matching the global measure with the metric of interest, parti-
cularly in relation to cortical thickness (i.e., controlling for average
cortical thickness), has also been questioned given wide variability in
thickness across the cortex (Palaniyappan, 2010). Therefore, the ma-
jority of research on non-volumetric measures have chosen not to
control for whole brain size.

Given these issues, due consideration needs to be given when
choosing the method of correction/control and measure of global brain
size, as well as interpretation of findings. Most researchers in this field
are aware of these issues, and thus present uncorrected results if they
choose to control for global brain size. However, as highlighted by Mills

and Tamnes (2014), it would also be valuable to present the develop-
mental effects of the global measure used, so that readers can fully
understand whether results were driven by global or regional changes.
Furthermore, investigation into developmental scaling relationships
between global and regional measures of interest, as well as potential
group differences, will help us better understand the influence of cor-
rection procedures and allow us to more appropriately interpret find-
ings.

8.3. Pubertal maturation

While most studies on brain development have indexed maturation
using age, a growing number of studies are examining the influence of
puberty. This interest partly stemmed from early studies identifying
earlier “peaks” in cortical volume in females compared to males, which
roughly corresponded to timing differences in the onset of puberty
between the two sexes (Giedd et al., 1999; Lenroot et al., 2007). Al-
though the exact age of these “peaks” has been found to vary sig-
nificantly since these initial findings, along with many studies failing to
identify any sex differences for certain measures of cortical develop-
ment (e.g., cortical thickness–Mills et al., 2014b; Vijayakumar et al.,
2016a; Wierenga et al., 2014b), there remains a growing interest in
pubertal influences. There are a number of cross-sectional studies on
puberty-related cortical development, but only a handful of long-
itudinal studies thus far (outlined in Table 3). These studies inevitably
have to consider potential age effects, as pubertal maturation and age
are highly covaried (Braams et al., 2015). Three of the studies either
controlled for age-effects or examined interactions between age and
pubertal measures. In comparison, two studies, from the University of

Box 3
Brain-behavior associations.

Aside from the methodological factors affecting studies of normative brain development, there are a number of additional challenges faced
by studies examining how individual differences in developmental trajectories relate to cognitive, affective and behavioral development.
While some studies have found that greater cortical thinning is related to better affective and cognitive functioning (e.g., Ducharme et al.,
2012, 2014; Shaw et al., 2006, 2011; Vijayakumar et al., 2014a), others have found that less thinning is related to better functioning
(Friedel et al., 2015). Apart from the influence of differences in the behavioral (i.e. functioning) measures employed, results of these studies
are influenced by the age range of participants, as faster rates of thinning might be adaptive in certain ages but not others. Adaptive
patterns of cortical development may also vary across the brain, and might be moderated by sex for certain behaviors that differentially
develop in males and females (e.g., emotion regulation; Vijayakumar et al., 2014b). Development prior to the examined period might also
influence identified brain-behavior associations in unknown ways. Given these caveats, care needs to be placed on the conclusions drawn
from such research. It also highlights the need for further studies that replicate findings in order to confirm inferences drawn from this line
of research.

From a statistical perspective, the majority of this literature has only examined behavior at one or two time points, which can be
incorporated as an absolute or change (i.e., difference or residualized change) value. However, analyses will become more complex as
studies incorporate three or more time points of behavioral data along with a similar number of imaging data, which would enable
investigation of nonlinear patterns of correlated brain-behavior development. While MLM can handle time varying covariates along with a
time varying dependent variable, it does not model change in the covariate and thus cannot examine the association between changes in
two variables. MLM can examine whether the association between brain and behavior varies with age, and while this question is of no
doubt of interest to many researchers, patterns of correlated brain-behavior change are also likely to provide valuable information about
developmental processes. Parallel process models within the structural equation modelling framework are ideal for investigating the
association between development of two or more variables, achieved via estimation of an underlying latent “change” factor for each
variable and associated correlation between these factors. However, structural equation modelling is not currently supported by statistical
programs for neuroimaging data, and can thus only be carried out using a region-of-interest or parcellation-based approach. Moreover,
many non-imaging statistical packages do not support unbalanced datasets for structural equation modelling, and thus cannot be easily
utilized on many samples without excluding a substantial amount of data. Further consideration of these factors and potential development
of software packages to support this type of analyses is required for our field to progress in this area of research.

Importantly, given the observational nature of this line of research, it is not possible to comment on causality when examining brain-
behavior associations; i.e., does engagement in behavior affect brain maturation or vice versa. Studies on training and practice effects
provide some support for a causative role of experience and activity-dependent plasticity (Dehaene et al., 2010; Draganski et al., 2004;
Gaser and Schlaug, 2003). However, it remains plausible that trophic effects influence neurobiological development that supports adaptive
functioning (Burgoyne et al., 1993). Therefore, it is important that conclusions are not drawn about causality, which should rely on future
animal research that attempts to fully unpack and better understand these associations.
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Pittsburgh cohort, recruited participants within a minimal age span
given the project’s primary focus was related to pubertal effects on
brain development. However, as there remained some variance in age
in this sample, the authors chose to control for baseline age within their
analytic models (Herting et al., 2014). Therefore, studies choose the
most appropriate methodology to deal with age depending on their
study design. However, it is always important to check for multi-
collinearity when entering age and puberty into the same model, as well
as recognizing that controlling for age might absorb much of the var-
iance related to puberty given the strength of correlation between these
two variables. These studies might therefore benefit from presenting
results both with and without the inclusion of age in their models.

Puberty-related studies also have to consider which index of pub-
ertal maturation to investigate. Although a detailed discussion of this
topic is beyond the scope of this paper (for a review, refer to Shirtcliff
et al., 2009), it is interesting to note that all studies listed in Table 3
have investigated pubertal/Tanner stage using self- or parent-report
measures given ease of administration and minimal costs of processing
data. However, most of them have also investigated associations be-
tween cortical development and gonadal sex hormones (i.e., testos-
terone and estradiol), and only one study thus far has investigated how
cortical development may be related to interactions between different
hormones (Nguyen et al., 2013a,2013b). Pubertal studies also have to
deal with issues related to modelling sex differences described above, as
well as sex differences in pubertal maturation. Given that females tend
to exhibit physical signs of puberty 1–2 years earlier than males
(Marshall and Tanner, 1969; Sun et al., 2002), projects specifically
interested in pubertal development sometimes recruit younger females
at baseline compared to males, with the aim of capturing pre-pubertal
stages in both sexes (e.g., University of Pittsburgh project; Herting
et al., 2014).

9. Discussion

In summary, given that studies to date differ on a number of
methodological issues, it is not surprising that there are variations in
the normative brain developmental trajectories that have been identi-
fied. While it is beyond the scope of this paper (and perhaps impossible)
to provide specific reasons as to why there is variation in reported re-
sults, we would like to point out that the evolution of methodological
techniques used within and across projects over time is beneficial to the
field. Although not to belittle the methods and results from earlier
studies, the more recent papers have implemented certain strategies
that are now widely accepted as improvements in our practices. For
example, there appears to be a shift towards the identification of the
most parsimonious models to describe the underlying data, as demon-
strated by more recent studies favouring the use of model-fit indices or
likelihood ratio tests in MLM. Nevertheless, there are also additional
practices that would be beneficial for our field to adopt, which are
outlined as recommendations in Table 4. For example, it has become
apparent that many studies run independent multilevel models in re-
gions across the brain, as defined by parcellation maps, without cor-
rection for multiple comparisons. Further consideration of this issue is
required in the field, and at the very least, we need to appropriately
interpret the findings of likelihood-based analyses (i.e., relative to
comparison models) as opposed to a focus on p-values of each model
individually.

This review of the literature identified certain methodological
considerations that have been empirically examined, and thus it is
possible to draw stronger conclusions and make recommendations re-
garding them. For example, there is general consensus on the benefits of
using longitudinal processing streams that create subject-specific tem-
plates when reconstructing the cortical surface. Similarly, it is widely
acknowledged that efforts should be made to maintain the same image
acquisition parameters across subjects and time, with appropriate
testing or accounting for any differences within the sample. In

comparison, there has been no investigation of whether model selection
procedures (i.e. step-down vs model fit indices) impact the resultant
trajectories. Furthermore, although the importance of certain metho-
dological issues has risen in prominence, there still remain no stan-
dardized practices to address many of these problems. For example,
despite an increased awareness of the effect of motion and importance
of QC, there are no systematic procedures that are agreed upon within
the field. As such, our recommendations outlined in Table 4 are aimed
towards i) ensuring that empirically supported ‘best-practices’ are in-
corporated, and ii) increasing transparency of other practices to support
future empirical investigations and guidelines.

With an inevitable shift towards consensus regarding methodolo-
gical approaches, the promise of more reliable data on normative brain
development becomes likely, particularly with the ability to conduct
meta-analyses. However, we are currently limited in our ability to
conduct such analyses due to methodological variation. For example, it
is difficult to amalgamate studies that have used parcellation versus
vertex-wise approaches or raw versus percentage change analyses. One
way to overcome this issue in the short term at least is for future studies
to conduct replications across samples, whereby the same processing
and analytic techniques are employed (e.g., Mills et al., 2016; Tamnes
et al., 2017). Greater transparency and consensus regarding methods
will also facilitate the implementation and interpretation of research
beyond normative developmental trajectories, such as that examining
the clinical and behavioral significance of brain development.

A limitation of this review is that we only included and reviewed
studies assessing the development of independent grey matter struc-
tural properties (Table 2). A growing area of research in grey matter
development is structural covariance, which refers to correlations
across people in the morphological properties of pairs of brain regions
(or larger brain networks; Alexander-Bloch et al., 2013a; Evans, 2013).
Interest in this methodology lies largely in its potential to shed light on
brain connectivity and connectomics using T1w scans. Indeed, there is
evidence that patterns of structural covariance partially (though not
entirely) recapitulate known functional boundaries (Chen et al., 2011;
Li et al., 2013), resting state fMRI connectivity patterns (Kelly et al.,
2012; Seeley et al., 2009) and white matter connectivity derived from
diffusion MRI (Gong et al., 2012). Studies of children and adolescents
have begun to map out developmental changes in structural covariance.
A brief discussion of existing cross-sectional and longitudinal studies,
and methodological issues specific to this methodology, is provided in
Box 2.

Moving beyond the characterization of normative brain develop-
ment, many researchers are now turning their attention towards how
individual differences in brain development might relate to various
aspects of functioning, including cognition, affect, and behavior. While
several studies have found that greater cortical thinning is related to
better functioning (e.g., Ducharme et al., 2012, 2014; Shaw et al., 2006,
2011; Vijayakumar et al., 2014a, 2016b), inconsistencies exist both
within and across studies. While this research enables us to better un-
derstand how various developmental processes might relate to one-
another, there are a number of additional methodological considera-
tions that might be influencing these findings. A brief discussion of
some of these issues is presented in Box 3.

Building on knowledge gained from research on normative brain
development, a number of projects are focused on characterizing
aberrant trajectories of brain development associated with psychiatric
and developmental disorders or subclinical symptoms, with the aim of
identifying underlying neurobiological mechanisms that might be tar-
geted in future interventions. The majority of research has thus far
concentrated on attention deficit hyperactivity disorder (ADHD),
autism spectrum disorders (ASD) and schizophrenia. Studies on child-
hood-onset schizophrenia have identified diffuse cortical thickness
differences during childhood in comparison to healthy controls, pos-
sibly with reductions in thickness becoming localized to the frontal and
temporal lobes during adolescence (Greenstein et al., 2006). ASD
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research has produced conflicting findings, with some identifying re-
ductions (Hardan et al., 2006), and others finding exaggerations
(Wallace et al., 2010), in cortical thinning over time. Research on
children with ADHD or attention problems suggest that these children
have thinner cortices during childhood, and delayed or slowed thinning
during adolescence (Shaw et al., 2007; Ducharme et al., 2012). The
significance of these findings is limited by the same issues as have been
discussed in this review. However, they are additionally limited by
heterogeneity within each disorder, as well as the lack of specificity of
findings to one particular disorder. Future studies on these and other
disorders thought to have neurodevelopmental origins (e.g. depression,
substance-use, conduct disorder) should attempt to identify whether
there are consistent patterns of aberrant trajectories of brain develop-
ment, and whether patterns can be differentiated across different dis-
orders.

In conclusion, we have identified a number of methodological fac-
tors and issues, from image acquisition to data modelling, where var-
iation in approaches taken in the current literature are likely to have
contributed to differing results, and hence differing interpretations
about grey matter structural brain development during childhood and
adolescence. As such, it is important that results are interpreted within
the context of these (and other) methodological choices. There is also
wide variability in the extent to which different methodological con-
siderations have been empirically examined. Future research should, in
addition to adopting greater transparency of practices, seek to empiri-
cally examine the effects of varying methods on results, in order to
promote best-practice guidelines, and ultimately, a solid and accurate
understanding of child and adolescent brain development.
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